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The exponential growth of mobile data services has translated into a proportionate surge

in demand for greater wireless broadband capacity. Within today’s fixed spectrum alloca-

tion regime, exclusive spectrum access rights are granted to federal and commericial users,

but a significant portion of the licensed spectrum has been underutilized by primary users

(PUs). To alleviate artificial spectrum scarcity, spectrum sharing has been proposed to allow

secondary users (SUs) to opportunistically access the locally unoccupied spectrum, called

White Spaces (WS), so long as they do not cause harmful interference to PUs. To this end,

the FCC is actively pursuing policy innovations to create shared spectrum, including WS in

TV bands (TVWS) and the 3.5 GHz Citizens Broadcast Radio Service (CBRS) band, which

often relies on a spectrum manager that manages the shared spectrum access, such as the

database administrator (DBA) in TVWS and the Spectrum Access System (SAS) in CBRS.

Our work begins by showing that the empirical DBA models for TV coverage estimation

are locally inaccurate, since they do not explicitly account for local obstructions. Therefore,

we propose augmenting the DBA approach with spatial-statistics-based radio mapping using

Kriging and show that it achieves more accurate coverage boundary estimation, which leads

to fewer missing WS opportunities (type-I errors) while keeping misclassifications (type-II



errors) under a certain limit.

Scaling spatial-statistics-based radio mapping to larger areas inevitably meets cost limita-

tions. An economically viable alternative is crowdsensing, that is, outsourcing sensing tasks

to spatially distributed users with mobile devices that are outfitted with spectrum sensors.

In order to attract user participation for crowdsensing, we propose an auction-based incen-

tive mechanism, in which each user submits a bid (the minimum acceptable payment) for

providing spectrum data and receives a payment when selected. We show that the proposed

scheme is truthful, computationally efficient, individually rational, and budget feasible.

We also consider the design of a pricing-based incentive mechanism, in which the platform

who constructs radio maps makes one-time offers (the incentive for participation) to selected

users (either sequentially or in batches) and collects data from those who accept the offers.

We formulate pricing mechanism design as expected utility maximization, where the expected

utility captures the tradeoff between radio mapping performance (location and data quality),

crowdsensing cost, and uncertainty in offer outcomes (possible expiration and rejection). We

show that the proposed user selection algorithm provides a provable performance guarantee

and the proposed mechanism outperforms the baseline mechanisms.

After WS opportunities are identified, it is crucial to efficiently allocate resources (e.g.,

available channels) to SUs. To this end, we study SAS-assisted dynamic channel assignment

in the CBRS. We propose a novel graph representation to capture spatially varying channel

availability, channel contiguity, and coexistence opportunities, which allows us to employ or

develop efficient algorithms with provable performance guarantees.

As the last piece of this thesis, we study the problem of monitoring whether Wi-Fi and

duty cycled LTE Unlicensed (LTE-U) are sharing channel access time in a fair manner. We

propose a scheme that allows the spectrum manager to estimate the duty cycle of a target

LTE-U system and detect duty cycling misbehaviors with a high probability of detection,

while keeping the false alarm probability under a certain limit.
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Chapter 1

INTRODUCTION

The increasing penetration of mobile devices (e.g., smartphones, tablets) and the prolif-

eration of multimedia applications have translated into a rapidly growing demand for greater

wireless broadband capacity. According to Ericsson forecasts [2], mobile broadband subscrip-

tions will reach 8.5 billion, and the total mobile data traffic will reach around 110 ExaBytes

(1018 Bytes) per month by 2023, with a compound annual growth rate of 42%. Such a trend

will continue to accelerate in the next few years, which is also anticipated by parties including

Cisco, Qualcomm, and the UTMS forum [3–5]. Therefore, it is a great challenge for network

operators to expand wireless network capacity and keep up with the sky-rocketing demand.

Several main solutions have been proposed to meet the capacity challenge [4,6,7], includ-

ing i) higher spectral efficiency by improving radio link (PHY/MAC) performance (increase

in bps/Hz), ii) network densification by deploying more small cells (increase in bps/Hz/m2),

and iii) more spectrum for broadband access (increase in Hz). As the current PHY/MAC

performance is approaching the Shannon theoretical limits [8] and network densification faces

various technical challenges [9], it is most straightforward to provide more spectrum, as the

Shannon capacity increases linearly with the bandwidth. In practice, however, spectrum is

a very scarce, expensive resource and currently the availability of new spectrum cannot keep

up with the demand.

Despite of spectrum scarcity, it has been acknowledged in the 2012 PCAST report [10]

that today’s apparent shortage of spectrum is in fact an illusion arising from the way spec-

trum is managed. Historically, spectrum was managed by granting exclusive rights of us-

ing a specific frequency at a specific location to federal and commercial users. Long term
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commercial licenses have been generally assigned through competitive bidding, and winners

receive exclusive spectrum access to frequencies of their choice (i.e., licenses) with regulatory

protection that prevents other services infringe on those frequencies (i.e., no interference).

Nevertheless, numerous studies [10–18] have shown that a significant portion of the licensed

spectrum is in fact underutilized by licensed or primary users (PUs), which, if shared, has

the full potential in expanding network capacity and spurring economic growth. Therefore,

regulatory bodies like the Federal Communication Commission (FCC) are pursing policy in-

novations to change spectrum usage from exclusivity to sharing, in order to move spectrum

availability from scarcity to abundance.

Under the paradigm of shared spectrum, secondary users (SUs) are allowed to opportunis-

tically access the locally unoccupied spectrum, which is called White Space (WS), subject

to the no-harmful-interference-to-PUs condition. In 2008, the FCC passed a historic ruling

that allows unlicensed devices to operate in TVWS [19]. In the 2012 PCAST report [10], the

U.S. government pushed it further by announcing its intentions to share 1000 MHz of federal

government spectrum with commercial systems. Towards this goal, the FCC targeted release

of the 3550-3700 MHz band, termed Citizens Broadband Radio Service (CBRS), which is

primarily used by high-powered Department of Defense radar systems and non-federal Fixed

Satellite Services (FSS) earth stations, to enable deployment of relatively low-powered net-

work technologies such as small cells. In addition to the current spectrum sharing initiatives

by the FCC (Figure 1.1) [20], a total of 1160 MHz federal spectrum is under study or will

be investigated in the future [21].

In order to coordinate dynamic access to shared spectrum, several sharing mechanisms

have been adopted: i) manual coordination between PUs and SUs as in the Advanced Wire-

less Services (AWS-3) [22], ii) Listen Before Talk (LBT) as in the Medical Device Radio-

communications Service (MedRadio) [23], iii) Dynamic Frequency Selection (DFS) as in the

U-NII bands [24], and iv) deployment of spectrum managers, such as the database adminis-

trators (DBA) in TVWS [19] and the conceptually similar database called Spectrum Access

Server (SAS) in the CBRS [25]. In this thesis, we focus on addressing the following challenges
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Figure 1.1: Selected spectrum sharing initiatives by the FCC.

arising from deploying spectrum managers with applications in TVWS and CBRS:

• Coverage/protection area estimation: In TVWS, PUs (including both transmitter

and receivers) within the TV coverage region are protected from SUs, and the coverage

contours are determined by comparing the Received Signal Strength Indicator (RSSI)

against a preset threshold (e.g., -84 dBm/6 MHz for digital TV services [19]). SUs

are not allowed to transmit within a minimum separation distance from the border of

the protected contour [17, 18]. A similar notion called protection areas is also defined

for incumbents (including authorized federal and FSS users) and licensed SUs1 in the

CBRS. For instance, each licensed SU has a default protection contour based on the

-96 dBm/10 MHz signal strength, within which the aggregate interference from other

SUs cannot exceed -80 dBm/10 MHz.

In order to estimate coverage/protection contours, empirical radio propagation models

including the FCC curves [19] and the Longley-Rice model [26] are widely adopted by

DBAs. However, there exist concerns about the local accuracy of modeled-based RSSI

estimation, including the fact that these models do not properly account for built

1Unlike the TVWS, the CBRS adopts a three-tiered spectrum access framework that includes incumbents,
licensed SUs, and unlicensed SUs. More details will be provided in Chapter 5.
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environments (e.g., buildings) in outdoor dense urban areas and indoors [18, 27, 28].

Therefore, one of the questions we try to answer is how to augment the DBA approach

with measurements via radio mapping in order to achieve more accurate estimation of

coverage/protection boundaries.

• Crowdsensed radio mapping: While measurement-driven radio mapping has the

potential for accurate RSSI and coverage/protection boundary estimation, it usually

requires a reasonable amount of local measurements from (static or dynamic) sensors

or measurement campaigns, which inevitably meets cost limitations when scaled to

a wide area. An economically viable alternative is via crowdsensing [29, 30], that is,

outsourcing spectrum sensing tasks to spatially distributed users with mobile devices

that are outfitted by spectrum sensors. Nevertheless, users would consume resources

such as computing power, storage, and battery for sensing, and would be less likely to

participate if appropriate compensations or rewards are not provided. Therefore, we

try to answer the next question – how to design incentive mechanisms for crowdsensed

radio mapping.

• Dynamic resource allocation: After WS opportunities are identified, it is crucial

for spectrum managers to efficiently allocate available channels to SUs in order to

optimize the overall network performance while meeting FCC regulations. There are

several challenges to be addressed. First, the set of available channels is spatially

varying in both TVWS and CBRS, which mainly arises from the fact that PUs and

licensed SUs are spatially distributed. Second, it is necessary to aggregate contiguous

channels of smaller bandwidths in shared spectrum (e.g., 6 MHz channels in TVWS and

10 MHz channels in CBRS) to support operations of various radio access technologies

(e.g., Wi-Fi requires 20 MHz channels [31]) and meet multi-channel demands. In the

CRBS, it is further required by the FCC that the same (contiguous) channel(s) be

assigned to geographically contiguous license areas of the same licensee [25]. Third,

Wi-Fi like MAC protocols such as CSMA/CA [31] and LBT in LTE-LAA [32] are
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becoming increasingly popular, which enable co-channel coexistence for SUs in close

proximity. Therefore, the problem we try to address is how to dynamically assign

channels and leverage coexistence opportunities while meeting the channel availability

and contiguity constraints.

• Fairness monitoring: When SUs are assigned the same channels, it is important to

achieve fair coexistence and enforce equal spectrum access rights. It is widely believed

that Wi-Fi and LTE are among the most dominant technologies that will be deployed

in unlicensed/shared bands [33–36]. In this thesis, we are interested in fair sharing of

channel access time between Wi-Fi and duty cycled LTE Unlicensed (LTE-U) [37,38].

While Wi-Fi/LTE-U coexistence has drawn a lot of attention [33,39–42], a concerning

fact has often be neglected: Wi-Fi networks, as benign users, can only access the

channel during LTE-U OFF time, while ON/OFF time is under unilateral control of

LTE-U networks. As a result, LTE-U, as self-interested users, may have incentives to

misbehave by transmitting with a larger duty cycle that exceeds the assigned limit

(e.g., 50% when one LTE-U network coexists with one Wi-Fi network), so as to gain

a greater share in channel access time and throughput. Therefore, the problem we try

to address is how to design a duty cycle estimation and misbehavior detection scheme

that monitors channel access time fairness for Wi-Fi/LTE-U coexistence.

1.1 Contributions of this Thesis

As illustrated in Figure 1.2, this thesis covers three topics in shared spectrum: i) incentivized

crowdsensing for spatial-statistics-based radio mapping, ii) dynamic resource allocation, and

iii) fairness monitoring. The specific contributions are described as follows.

1.1.1 Spatial-Statistics-Based Radio Mapping for TV Coverage Estimation

Our first work is motivated by concerns about local accuracy of RSSI and coverage/protection

boundary estimation based on empirical radio propagation models employed by DBAs, in-
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Figure 1.2: Organization of this thesis.

cluding the fact that they do not properly account for built environments (e.g., buildings,

trees). In this work, we conducted a measurement campaign (i.e., war-driving) over a 4.6

km-by-5 km suburban region in Seattle, WA, and collected I/Q samples of 31 permissible TV

channels at 240 locations. We use the collected data to quantify the RSSI prediction errors

of DBA models – the FCC Curves and the Longley-Rice model, and we show that the DBA

models tend to over-estimate RSSI by omitting man-made or natural local obstructions.

We apply a well-known statistical interpolation technique called Kriging to radio map-

ping by estimating the RSSI value at an unmeasured location from nearby available measure-

ments. We show that measurement-driven Kriging achieves consistently good performance.

We then quantify the boundary estimation performance in terms of type-I/II errors for three

approaches: i) Kriging on measurement data followed by estimation, ii) estimation on mea-

surement data using k-Nearest Neighbor (k-NN) classifier, and iii) estimation on predicted

field strengths using DBA models. We show that Kriging reduces type-I errors by 46.1%

compared to DBA models while keeping type-II error rate under 5%, which is also an im-

provement over the k-NN approach. More importantly, both measurement-driven approaches

perform significantly better than the DBA models that suffer from high type-I error rates.
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1.1.2 Auction-Based Crowdsensing for Spatial-Statistics-Based Radio Mapping

In order to attract user participation for crowdsensed radio mapping, we investigate and

develop reverse auction-based incentive mechanisms, in which each user submits a bid (the

minimum acceptable payment) for providing spectrum data and receives a payment when

selected. We first develop a budget-free mechanism with a cardinality constraint (an upper

limit on the number of selected users) and show that it is truthful, computationally efficient,

and individually rational. We then develop a budget-feasible mechanism by translating

the budget constraint into the best cardinality constraint using the bisection method. We

conduct extensive simulations to evaluate the performance of the proposed mechanism and

compare it against the state-of-the-art budget-feasible mechanism. Our results reveal that the

proposed mechanism makes full use of the budget and performs significantly better compared

to the baseline with improvements of 18%-22% in terms of maximizing the average prediction

error variance (Kriging variance) reduction.

1.1.3 Pricing-Based Crowdsensing for Spatial-Statistics-Based Radio Mapping

We also consider the design of a pricing-based incentive mechanism, in which the platform

who constructs radio maps makes one-time offers (the incentive for participation) to selected

users (either sequentially or in batches) and collects data from those who accept offers. We

develop pricing mechanisms based on expected utility (EU) maximization, where EU captures

the tradeoff between radio mapping performance (location and data quality), crowdsensing

cost, and uncertainty in offer outcomes (possible expiration and rejection).

Specifically, we consider both sequential offering, where one best price offer is sent to the

best user in each round, and batched offering, where a batch of offers is made in each round.

For the later, we show that EU is submodular in the discrete domain, and propose a mech-

anism that first fixes the pricing rule, and selects users based on unconstrained submodular

maximization (USM); it then compares different pricing rules to find the best batch of offers

in each round. We show that USM-based user selection has a provable performance guaran-
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tee. We evaluate and compare the proposed mechanisms against the utility-maximization-

based baseline mechanisms. Our results show that our single-batch mechanism is better than

the single-batch baseline mechanism with an improvement ranging from 8.5% to 40.5%. If

more batches are allowed, our multi-batch mechanism achieves close performance with the

multi-batch baseline mechanism, but requires much fewer batches (2.5 versus 7.7 batches on

average) and thus a much smaller delay.

1.1.4 SAS-Assisted Coexistence-Aware Dynamic Channel Assignment

Different from TVWS, the CBRS adopts a three-tiered spectrum access framework that con-

sists of i) Incumbent Access, ii) Priority Access (PA), and iii) Generalized Authorized Access

(GAA). In this work, we study SAS-assisted dynamic channel assignment (CA) for PA and

GAA tiers in the CBRS. We introduce the node-channel-pair conflict graph to capture pair-

wise interference, channel and geographic contiguity constraints, spatially varying channel

availability, and coexistence awareness. The proposed graph presentation allows us to for-

mulate PA CA and GAA CA with binary conflicts as max-cardinality CA and max-reward

CA, respectively. Approximate solutions can be found by a heuristic-based algorithm that

aims to solve the maximum weighted independent set problem.

We further formulate GAA CA with non-binary conflicts as max-utility CA. We show

that the utility function is submodular and the problem is an instance of matroid-constrained

submodular maximization. We propose a polynomial-time algorithm based on local search

that provides a provable performance guarantee. Extensive simulations using a real-world

Wi-Fi hotspot location dataset are conducted to evaluate the proposed algorithms. Our

results have demonstrated the advantages of the proposed graph representation and improved

performance of the proposed algorithms over the baseline algorithms.

1.1.5 Monitoring Channel Access Time Fairness for Wi-Fi/LTE-U Coexistence

As the last piece of this thesis, we study the problem of monitoring channel access time fair-

ness for Wi-Fi/LTE-U coexistence. we propose a scheme that allows the spectrum manager
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managing the shared bands to estimate the duty cycle of a target LTE-U network based

on PHY layer observations from a nearby Wi-Fi AP, without interrupting normal Wi-Fi

operations. We further propose a thresholding scheme to detect duty cycling misbehavior

(i.e., determining if the duty cycle exceeds the assigned limit) and analyze its performance

in terms of detection and false alarm probabilities. The proposed schemes are implemented

in ns3 and evaluated with extensive simulations. Our results show that the proposed scheme

provides an estimate within ±1% of the true duty cycle and detects misbehavior with a duty

cycle 2.8% higher than the limit with a detection probability of at least 95%, while keeping

the false alarm probability less than or equal to 1%.

1.2 Organization of this Thesis

This dissertation is organized as follows. Chapter 2 discusses the application of a spatial-

statistics-based technique called Kriging to radio mapping for TV coverage estimation. Chap-

ters 3 and 4 present an auction-based incentive mechanism and a pricing-based incentive

mechanism for crowdsensed radio mapping, respectively. Chapter 5 discusses SAS-assisted

coexistence-aware dynamic channel assignment in the CBRS. Chapter 6 presents a fairness

monitoring scheme that estimates duty cycle and detects possible duty cycling misbehavior

of the LTE-U network when coexisting with a Wi-Fi network in the shared spectrum.
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Chapter 2

SPATIAL-STATISTICS-BASED RADIO MAPPING FOR TV
COVERAGE ESTIMATION

The exponential growth of wireless mobile services has translated into a proportionate

surge in demand for additional network capacity. While spectrum is a scarce and expensive

resource, a significant portion of licensed spectrum has been grossly underutilized by PUs.

To address the artificial scarcity of spectrum, spectrum sharing has been proposed to allow

SUs to opportunistically access locally unoccupied spectrum or WS, subject to a no-harmful-

interference-to-PUs constraint.

The first potential application of spectrum sharing was intended for the VHF/UHF TV

bands, concurrent with the transition from analog-to-digital over the broadcast in the United

States. In 2008, the FCC opened up (portions of) unused TV band spectrum [19]. As per

the FCC ruling [43,44], SUs must obtain information regarding locally available spectrum by

contacting a geo-location DBA to retrieve a list of available channels. A core output of DBA

querying is the estimated coverage contours of primary sources (TV transmitters) based on

suitable propagation models (notably, the FCC Curves [19] prescribed by the FCC for all

current DBAs). In any case, the contour is determined by comparing the estimated RSSI at

a location to a preset threshold (e.g., 41 dBµV/m or −84 dBm for digital TV services1). SU

devices are not allowed to operate within this region plus the vicinity, which is the so-called

“no-talk” zone.

Concerns about local accuracy of RSSI estimation based on propagation models include

the fact that these do not account properly for built environments (e.g. buildings) in dense

1This threshold is subject to calculation for DTV stations using the Longley-Rice methodology based
on the receive system model in [19, 26]. The FCC ignores actual waveform information (e.g., ATSC 1.0),
which should be considered as a weakness.
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urban outdoors as well as indoors [28]. As a result, DBAs may not estimate coverage regions

accurately, causing possible interference to PUs or missing WS opportunities. On the other

hand, local spectrum sensing is generally more accurate, but is expensive and labor-intensive,

making sampling at all locations over a large geographical region practically infeasible. This

leads to a natural proposition given the respective advantages of both approaches – can these

be effectively combined, namely, by conducting a small amount of local measurements over

fringe areas of protected regions predicted by DBAs, using statistical interpolation techniques

to estimate RSSIs at unmeasured points, and finally refining protected contours based on

interpolation results?

In [45, 46], authors applied well-established geo-statistical interpolation technique called

Kriging to coverage prediction and showed that it is able to achieve competitive or better

performance as compared to propagation models. While this prior work serves as the imme-

diate inspiration, they limited themselves to signal interpolation and did not actually explore

the problem of TV coverage estimation, which is the main interest in protecting PUs.

In this work, we conducted a vehicle-based measurement campaign over a 4.6 km-by-5 km

suburban region in Seattle, WA, to collect I/Q samples of 31 permissible UHF channels at 240

locations. We then evaluate and compare the measurement-based Kriging approach followed

by classification for coverage region estimation against the DBA model-based approach. Our

specific contributions are as follows.

• As a baseline, we quantify the RSSI prediction errors of DBA models, i.e., the FCC

Curves and Longley-Rice (LR) model. Our results show that they tend to over-estimate

RSSI values by omitting man-made or local obstructions (e.g., buildings, trees).

• We compare the boundary estimation performance of three approaches in terms of

type-I/II errors: i) Kriging-based estimation, ii) k-Nearest Neighbor (k-NN) based

estimation, and iii) DBA model based estimation. Our result show that for a given

TV service threshold (-84 dBm), the Kriging-based approach reduces type-I errors by

46.1% as compared to DBA models while keeping type-II error rate under 5%, which
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also outperforms the k-NN approach. Both measurement-driven approaches perform

much better than the DBA models that suffer from high type-I error rates.

The remainder of this chapter is organized as follows. Section 2.1 reviews recent Kriging

applications in radio mapping, and Section 2.2 provides brief background on Kriging. Our

measurement campaign is described in Section 2.3. We compare Kriging-based RSSI and

boundary estimation against the DBA models in Sections 2.4 and 2.5, respectively. This

chapter is concluded in Section 2.6.

2.1 Related Work

Radio mapping approaches rest on two broad thematic pillars – use of analytical propagation

models for a priori prediction of RSSI complemented by measurement-driven a posteriori

techniques. The performance of propagation models has been investigated earlier in [47,48].

Recently in [28], authors systematically analyzed the accuracy of various propagation models

using a large dataset. Data-driven spatial interpolation with statistical methods rests on the

work of Daniel Krige originally developed for mining applications, which is later applied to

other fields such as soil science, hydrosciences, and radio mapping [49–53].

The comparative use of predictive path loss models (such as the FCC Curves and the

LR model) and Kriging based approaches for RSSI estimation has only a sparse recent

history. In [45], authors compared the RSSI estimation performance of the LR model against

Kriging for a single TV source and showed that Kriging achieves better performance than

propagation models with a small amount of measurements. The authors further analyzed the

multi-transmitter scenario and empirically demonstrated the advantages of Kriging in [46].

Unlike [52], we do not track (slow channel fading) variations and defer investigation of

temporal interpolation to future work. In this work, we attempt a structurally similar

exercise specifically for the mapping of TV channels. We compare the prediction accuracy of

the FCC curves and the LR point-to-point model in predicting available channels. We also

conducted a measurement campaign in TV bands for a typical sub-urban region in Seattle,
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WA of approx. 23 sq. km and extended Kriging techniques for boundary estimation – for

comparison against model based predictive techniques.

2.2 Spatial Interpolation – Kriging

The RSSI (in dBm) at a point in a region of interest D ∈ R2 is modeled as a random field

Z(x), and any set of measured RSSI values {Z(xi) : i = 1, 2, ..., n} is considered a realization

of the underlying random process. One of the most widely used Kriging techniques, called

Ordinary Kriging (OK), models Z(x) with a mean field µ and a residual δ(x), that is,

Z(x) = µ+ δ(x),x ∈ D, (2.1)

where µ is an unknown constant. In radio mapping, one may interpret µ as being determined

by the path loss and large-scale fading effects and δ(·) as possible sampling errors. In OK,

Z(x) is assumed to be intrinsically stationary, i.e.,

E[Z(x)]− E[Z(x + h)] = 0, (2.2)

E[(Z(x)− Z(x + h))2] = 2γ(h), (2.3)

where γ(h) is the semivariogram and h is the distance lag between two locations2. Gener-

alized Kriging techniques drop this constant-mean assumption by applying a varying-mean

model (e.g., Universal Kriging). In this work, we report results using OK (and defer inves-

tigation of other Kriging methods to future work).

2.2.1 Semivariogram γ(h)

The semivariogram γ(h) captures the spatial continuity or correlation of the signal field, i.e.,

two points closer in space tend to have more correlated RSSI values than those farther apart.

2h is a vector with an amplitude and direction. A semivariogram that considers directions is called an
anisotropic semivariogram, otherwise, isotropic. In this work, we consider isotropic semivarograms and
leave anisotropy for our future work.
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Constructing empirical semivariogram γ̂(h) from measured data

In this study, we adopt the Cressie-Hawkin robust estimator [54] given as below:

γ̂(h) =
1

2
·

{
1

N(h)

∑
N(h)(Z(xi)− Z(xj))

1/2
}4

(0.457 + 0.494/N(h))
, (2.4)

where xi and xj are locations that are separated by approximately h and N(h) is the total

number of such pairs. Compared to the classical estimator used in [50], the Cressie-Hawkin

estimator is more robust to atypical observations and outliers [54].

Fitting γ̂(h) with parametric models

The next step is to fit γ̂(h) with parametric models, such as exponential, Gaussian, spherical,

and cubic models. For example, the exponential model is defined as:

γ(h) = a+ (s− a)
(
1− e−3h/r

)
, h ≥ 0, (2.5)

where the nugget a represents the discontinuity around the origin caused by sampling errors

and small-scale variability, the range r is the distance where the model first flattens out,

and the sill s is the limit of γ(h) when h goes to infinity, which measures the maximum

variance between two points that are far apart. The Weighted Least Squares is performed

to determine the best parameters for each model, using the available package in geoR [55].

Choosing the best fitted model

To find the best among competing fitted models, we cross-validate each fitted model with

the same training dataset used for semivariogram estimation. A popular cross-validation

(CV) technique called the leave-one-out CV works as follows: each and every data point is

excluded from the training dataset, whose value is then predicted by OK with the proposed

model using the remaining data and compared with its true value. The one with the smallest

mean squared error (MSE) is selected as the best model.
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2.2.2 Interpolation

In OK, the predicted value Ẑ(x0) at an unmeasured location x0 is a linear combination of

the measured values at nearby locations {Z(xi) : i = 1, 2, ..., n}, that is,

Ẑ(x0) =
n∑
i=1

ωiZ(xi), (2.6)

where the weights {ωi} are normalized (i.e.,
∑n

i=1 ωi = 1) so that the estimator is unbiased.

The prediction error is quantified by the MSE:

σ2
E(x0) = E[(Ẑ(x0)− Z(x0))2] (2.7)

= −γ(0) + 2
n∑
i=1

γ(xi − x0)−
n∑
i=1

n∑
j=1

ωiωjγ(xi − xj), (2.8)

The minimization of MSE σ2
E(x0) with respect to {ωi} under the normalization constraint

leads to a set of linear equations, solving which results in the optimal values of {ω∗i }:

ω1

ω2

...

ωn

λ


=



γ(d11) ... γ(d1n) 1

γ(d21) ... γ(d2n) 1

... ... ... ...

γ(dn1) ... γ(dnn) 1

1 ... 1 0



−1

·



γ(d01)

γ(d02)

...

γ(d0n)

1


, (2.9)

where dij ≡ |xi−xj| is the Euclidean distance between locations i and j and λ is the Lagrange

parameter used to enforce the normalization constraint. The minimized MSE is called the

Kriging variance, which represents the prediction uncertainty at location x0.

2.3 Measurement Campaign

A vehicle-based measurement campaign was conducted over a 4.6 km-by-5 km sub-urban

area (Figure 2.1) with a typical geographical layout (e.g., streets, trees, buildings) in Seattle

lasting two and a half days. Our goal is to evaluate the efficacy of Kriging in estimating

RSSI and coverage boundaries for TV transmitters. A total of 31 permissible 6-MHz UHF

channels (CH 21-51) from 512 to 698 MHz were sampled at a total of 240 different locations.
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Figure 2.1: (a) Locations of TV transmitters whose TV service regions cover the sampled

region according to the FCC curves. (b) 240 sample locations (in red dots). (c) Spectrum

analyzer that consists of a laptop, a USRP B210 [1], and a 3 dBi omni-directional antenna.

2.3.1 Equipment and Setup

During the measurement campaign, the antenna of the spectrum analyzer (Figure 2.1) was

securely mounted on the top of a van. The resulting antenna height was around 2.2 meters

above ground. In order to calibrate the spectrum analyzer, we fed tones with known signal

power at a known frequency using a signal generator into the spectrum analyzer. We then

recorded I/Q samples, estimated uncalibrated signal power at the corresponding bin, and

computed the average offset based on 900 measurements. In order to determine the noise

level, we fed nothing to USRP and estimated the calibrated signal strength over a 6-MHz

channel. The maximum signal strength (with noise only) out of 500 measurements was taken

as the noise level.
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2.3.2 Sampling Design

We adopted a grid sampling design and determined measurement locations as follows. First,

we defined the region of interest and generated a “uniform” (equilateral triangular) sample

grid similar to [50]. To balance opportunity costs (e.g., labor, time etc.) and interpolation

resolution, a grid spacing of approximate 350 meters was chosen, resulting in a total of 240

sample locations. However, due to various physical constraints (e.g., roads, buildings, trees

etc.), we were not able to comply with the original sampling plan strictly, and thus the

eventual sampling layout appeared a little irregular at many places. That being said, our

measurement campaign reflected the complexity of practical sampling over a large geograph-

ical region and the irregularity in obtained data. In practice, we did not follow any particular

sampling order and sampled in a way that was smooth and efficient.

2.3.3 Measurement Methodology

Our measurement consisted of two phases: i) I/Q sample collection, and ii) energy-detection-

based post-processing. In the first phase, we prepared a Python script which tuned USRP

to the center frequency of a 6 MHz channel and sampled the signal at a rate of 8 MHz for

0.5 seconds. The main reason of over-sampling a channel was to minimize FFT edge effects

by dropping the first and last 12.5% bins of obtained periodograms (up to a total of 25%

bins – 2 MHz) later at the post-processing stage.

Raw I/Q samples for a single channel were then stored in shorts (i.e., two bytes for an

I or Q sample), generating a data file of size 16 MB. After sampling a channel, the script

waited for 0.5 seconds before switching to the next one to ensure successful tuning. Hence,

it took approximately 30 seconds to perform a complete scan for 31 channels.

The script varied a key parameter called the USRP gain (ranging from 0 to 72) to adjust

SNR when sampling signals, especially weak ones. If the targeted signal at the sampled

location is strong, a high gain would cause Analog-Digital-Conversion (ADC) saturation,

distorting power spectral density (PSD) and RSSI data. In order to do avoid possible ADC



18

saturation for any channel at any location, we set the gain to a conservative value of 26.

On the other hand, for a particular channel (CH 35) that exhibits weak signals, we chose a

higher gain of 36 to obtain more accurate RSSI readings. Given the above USRP settings, the

measured noise levels were −82.29 dBm and −92.92 dBm for gains of 26 and 36 respectively.

In the post-processing phase, we used MATLAB to perform energy detection based on

I/Q samples. In addition to over-sampling, we also applied Blackman-Harris windowing

before performing FFT to further minimize the effect of spectral leakage. The number of

FFT bins was 2048 for a 8-MHz band (before truncation), and the frequency resolution of

was 3.9 KHz per bin. After dropping 25% of bins, a total of 1536 bins were obtained for a 6

MHz channel. Then we computed PSD by averaging 100 periodograms, and the equivalent

sensing duration was 25.6 ms3. Eventually, we could get a 240-by-3 matrix of output data

for each channel containing (X, Y,RSSI) at 240 locations4.

2.4 RSSI Estimation

RSSI estimation is the building block for predicting coverage regions of primary sources.

In this section, we demonstrate the application of OK to RSSI prediction and quantify its

performance improvements over the DBA models (i.e., FCC Curves and Longley-Rice).

2.4.1 An OK Example

Figure 2.2 illustrates the general procedure of Kriging. After sampling and post-processing,

the (truncated) empirical semivariogram γ̂(h) (Figure 2.3(b)) was estimated from measured

data using the robust estimator in Eq. (2.4). The lag spacing was 0.35 km, which was same as

the sample spacing, and 1/3 of the maximum pairwise distance was chosen as the maximum

lag distance (2.3 km). Next, four popular models, i.e., exponential, Gaussian, spherical and

cubic models were fitted to γ̂(h), and the exponential one was selected based on CV results.

3Different from real-time spectrum sensing, sensing duration was not critical for Kriging applications.
Hence, we chose a relatively long sensing duration to achieve good performance of energy detection.

4Locations were converted from geo-coordinates with respect to a reference point.
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Figure 2.2: General procedure of radio mapping using Kriging. First of all, spatial sampling

will be conducted over the geographical region of interest to collect spectrum measurements,

followed by necessary post-processing. Then empirical semivariogram can be estimated from

measurements and fitted by parametric semivariogram models. Once a reasonable semivar-

iogram is in place, it can be used to interpolate the RSSI value at an unmeasured location

from available measurements and eventually generate a radio map for visualization.

In order to visualize a radio environment map, the geographical region is discretized into

a mesh of grid points at a chosen resolution. For example, with a resolution of 0.03 km, there

are a total of over 28,400 points for the target region. We then interpolated the RSSI value

for each grid point and obtained its corresponding Kriging variance. Finally, we plotted both

Kriging predictions and variances on maps as shown in Figures 2.3(c) and 2.3(d).

2.4.2 Kriging Versus DBA Models

In order to compare the performance between OK, LR and the FCC Curves, we investigated

four channels (CH 25, 31, 33, 50) with diverse channel characteristics (Table 2.1), whose

average SNR exceeded 15 dB so that noise power could be omitted. Representing the simplest
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Figure 2.3: (a) TV transmitter of CH 35 and its DBA coverage region (in red). (b) Empirical

semivariogram and four fitted parametric models (exponential, Gaussian, spherical, and

cubic). Based on CV results, the exponential model was chosen with a nugget of 6.48, a

range of 2.11, and a sill of 22.02. (c) RSSI map. (d) Kriging variance map. Red indicates

large values, while white implies small values. Lines in (c)/(d) are contours representing

different RSSI/Kriging variance values (not shown due to limit of space).
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CH
ERP HAAT Dist. µ σ ME (dB) RMSE (dB) OK Gain

(dBW) (m) (km) (dBm) (dB) OK LR FC OK LR FC Over FC

25 60.00 290 11.32 -50.34 7.11 0.02 31.59 27.27 5.15 32.45 28.10 22.95

31 58.45 218 9.48 -53.46 8.34 0.00 30.65 26.57 5.79 31.51 27.92 22.13

33 56.02 716 35.95 -68.86 6.59 -0.07 27.86 21.60 5.21 29.06 22.63 17.42

50 53.08 719 35.98 -52.06 8.87 0.00 14.99 8.95 5.72 19.78 12.75 7.03

Table 2.1: Performance comparison between OK, LR and FCC Curves (FC) in terms of mean

error (ME) and root mean squared error (RMSE). The OK gain is defined as the amount

of RMSE reduced by OK compred to FC. The term ERP stands for effective radiate power,

and HAAT stands for height above average terrain. Note that Kriging performs significantly

better than DBA models.

method, OK’s performance may serve as the lower-bound of the Kriging family. To ensure fair

comparison, the following equation was used to convert fields strength predictions (dBµV/m)

of DBA models to signal strengths (dBm):

PdBm = EdBµV/m − 20logfMHz +GdBi − 77.2 (2.10)

where fMHz is the center frequency of a channel and GdBi = 3 dBi is the antenna gain.

The leave-one-out CV technique was applied and two metrics were adopted to quantify

the prediction performance: i) the bias or mean error (ME) – the average difference between

predicted and measured RSSI (ground truth), and ii) the root mean squared error (RMSE)

between the prediction and ground truth.

We have two observations from results in Table 2.1. First, OK achieves a ME value very

close to 0, since it is an unbiased estimator. While FC causes a smaller ME than LR, both

over-estimate the RSSI and lead to a ME as high as 31.59 and 27.27 dB, respectively. Second,

OK consistently produces a RMSE of 5-6 dB, which is significantly better than DBA models,

primarily because DBA models do not explicitly account for environmental obstructions. In

addition, we observe that the performance of DBA models differs from channel to channel,
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thus making OK gain channel-dependent.

2.5 Boundary Estimation

In this section, we introduce two metrics to measure the boundary estimation performance

and compare Kriging against the DBA models and the popular k-Nearest Neighbor (k-NN)

classifier, applied to our problem.

2.5.1 Performance Metrics

TV coverage regions are essentially decision regions (Figure 2.3(a)) defined by their bound-

aries, based on which we may predict at a given location whether a channel is either available

for unlicensed access (labeled with 1, TV service unavailable) or occupied (labeled with 0,

TV service available). In DBAs, the channel availability label is determined via simple

thresholding as follows:

L̂DBA(x) =

1, if ẐDBA(x) < Γ

0, otherwise

(2.11)

where ẐDBA(x) is the predicted field strength (dBµV/m), L̂DBA(x) the predicted label, and

Γ a preset full-power DTV service threshold (i.e., 41 dBµV/m).

Hence, it is essentially a classification problem to determine channel availability at a given

location. Given N measurements, we evaluate the performance of a classification scheme or

boundaries via leave-one-out CV as follows. First, one data point is excluded from the entire

dataset, whose label is predicted based on estimated boundaries derived from the remaining

data. The measured RSSI value at that location is treated as ground truth, and its true label

is obtained through thresholding. Comparing the predicted label against the true label, we

get two types of errors:

• Type I : a channel is predicted to be occupied (0), when it is actually available (1).

• Type II : a channel is predicted to be available (1), when it is actually occupied (0).
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We repeat the above procedure for each data point and count type-I/II errors for a particular

boundary estimation scheme and arrive at:

• Type I error rate ε1:

ε1 =
# of Type-I Errors

# of True 1 Labels
, (2.12)

• Type II error rate ε2 :

ε2 =
# of Type-II Errors

# of True 0 Labels
. (2.13)

Notably, the cost of the two types of errors is asymmetric per the FCC ruling, and we seek to

reduce ε1 (i.e., missing spectrum opportunities), while keeping ε2 (i.e., possible interference)

below an acceptable limit.

2.5.2 Methods

Method I – DBA Boundary

To first predict the field strength at a given location from a TV transmitter, a DBA model

takes engineering parameters such as the distance between transmitter and receiver, channel,

effective radiate power, antenna height and patterns, as well as terrain data as inputs (for

Longley-Rice), and outputs the field strength (dBµV/m) without any local measurements.

In order to further determine boundaries of a transmitter, a DBA finds the farthest point

for each azimuth value (0-360 degrees centered at TV transmitter location), whose predicted

field strength is above the TV service threshold (41 dBµV/m). By connecting those points

with a continuous line, a DBA is able to obtain boundaries that define a TV coverage region.

Method II – k-NN Boundary

k-NN normally takes labels of measured (training) data with respect to a threshold Γ as

true inputs and predicts the label of an unmeasured (testing) location as follows. First, it

searches for the k nearest neighbors for the given location based on Euclidean distance and
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uses the majority label among k neighboring labels as the predicted label (any tie is broken

randomly).

Since k is user-defined, the optimal value k∗ can be determined from the training dataset

through CV as follows. First, the entire training set is randomly divided into M (e.g., 10)

subsets. For a given k, each and every subset are excluded, whose labels are predicted based

on true labels of other four subsets. Then we could count type-I/II errors and compute ε1/ε2

accordingly. Different values of k from 1 to kmax (some large value) are examined, and the

one with minimum ε2 (with higher priority) is chosen as k∗.

Obviously, k-NN boundary estimation performance evaluated with the testing dataset in

terms of ε1 and ε2 largely depends on Γ. Hence, one way to control k-NN boundaries is to

use an adjusted threshold Γ′ = (1 + α)Γ to label training data instead of Γ, where α ≥ 0.

For example, if Γ = −84 dBm and we want to make k-NN more conservative in predicting

available channels, we may choose a lower Γ′ = −85 dBm (α = 1.2%).

Method III – Kriging Boundary

We use Eq. (2.11) to produce a labeling rule for Kriging by recognizing the prediction un-

certainty at a given location as follows:

L̂Kri(x) =

1, if ẐKri(x) < Γ− λ · σ(x)

0, otherwise

, (2.14)

where σ(x) is the Kriging standard deviation and λ ≥ 0 is a control parameter. Given

Z(x) > Γ (occupied) and ẐKri(x) < Γ (predicted to be available), λmin = (Γ− ẐKri(x))/σ(x)

is the minimum value to change the predicted label from 1 to 0 (no type II errors).

Note that the objectives of α in k-NN and λ in Kriging are consistent: the predicted

RSSI at a given location has to be low enough to be labeled as 1 (available); otherwise, we

would rather label it as 0 to avoid possible type II errors (even at the cost of increased type

I errors). Their effects will be explored in the next section.
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2.5.3 Controlling k-NN and Kriging Boundaries

In order to understand the impact of control parameters α and λ on k-NN and Kriging

boundaries, we investigated CH 35 whose predicted boundary region via the FCC Curves

falls within the measurement region. The TV service threshold Γ was set to be -84 dBm [19].

Note that the dataset for CH 35 collected with a USRP gain of 36 was used, as they better

captured signal power at different locations. We varied α and λ and computed corresponding

ε1 and ε2 with the approach described in Section 2.5.1.

α(%) 0 2.0 4.0 6.0 7.0

k-NN

ε1 (%) 12.8 16.7 27.2 47.8 59.4

ε2(%) 43.3 38.3 18.3 8.3 5.0

sum (%) 56.1 55.0 45.5 46.1 64.4

λ 0 0.40 0.80 1.03 1.34

Kriging

ε1 (%) 10.0 16.7 30.0 41.7 53.9

ε2 (%) 46.7 31.7 18.3 10.0 5.0

sum (%) 56.7 48.4 48.3 51.7 58.9

Table 2.2: Impact of control parameters α and λ on type-I/II error rates ε1/ε2. Γ = −84

dBm. When α and λ increase, ε2 is reduced and ε1 is increased for both k-NN and Kriging.

We observe from Table 2.2 that by increasing α and λ, ε2 may be effectively reduced. For

instance, when α = 7.0% and λ = 1.34, we become more conservative in predicting available

channels, and ε2 of both k-NN and Kriging boundaries is reduced to 5%. Second, there exists

a trade-off between ε1 and ε2 when λ changes, as illustrated in Figure 2.4. For example, with

λ = 0.4, a total of 9 type-II errors are reduced but 12 type-I errors are introduced.

Complete elimination of type-II errors for Kriging boundaries requires λ = 2.00, which

would introduce a large amount of type-I errors. It implies that the predicted RSSI values at

a few locations are much lower than the threshold and their true (measured) values, and it is

Kriging’s under-estimation at those locations that causes type-II errors. In order to determine
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Figure 2.4: Histogram of λmin that changes a predicted label from 1 (available) to 0 (oc-

cupied) for Γ = −84 dBm. In (a), both predicted and true labels are 1, and changes in

predicted labels from 1 to 0 introduce type I errors. In (b), predicted labels are 0 while the

true labels are 1 (type-II errors). Hence, changes in predicted labels from 1 to 0 eliminate

type-II errors.

whether they are outliers (possibly due to sampling errors), additional measurements may be

conducted at the same and nearby locations to improve the RSSI estimation and subsequent

boundary estimation.

2.5.4 Performance Comparison

In this experiment, we compared the performance of Kriging, k-NN and DBA boundaries for

CH 35. Based on both FCC Curves and Longley-Rice boundaries, the channel is occupied at

all locations within the sampled region (i.e. predicted labels are always 0), leading to ε2 = 0

while ε1 = 100%. To ensure fair comparison, we adjusted Kriging and k-NN boundary
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Figure 2.5: Comparison between DBA models, k-NN and Kriging boundaries for Γ = -84

dBm. (a) α = 7.0%, λ = 1.34. (b) α = 6.0%, λ = 1.03.

estimation in such a way that ε2 was no larger than 5% or 10%, and compared corresponding

ε1 when Γ = −84 dBm.

As shown in Figure 2.5, Kriging achieves significant performance improvement over the

DBA boundary prediction with gains of 46.1% and 58.3% in ε1 for ε2 ≤ 5% (i.e., fewer

than 3 type II errors) and 10% (i.e., fewer than 6 type II errors) respectively. Although

k-NN boundaries cause 6% higher ε1 than Kriging, they also perform very well compared

to DBA prediction. The primary reasons that Kriging and k-NN have very close perfor-

mance are that i) both fundamentally use spatial (neighbor-based) information, and ii) are

measurement-driven, which better captures the local environment. Nevertheless, Kriging

uses more soft information (i.e. RSSI values) than binary labels (as in k-NN) and from more

than k neighbors.

Figure 2.6 illustrates k-NN and Kriging boundaries using all data points for Γ = −84
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(a) ε2 ≤ 5% (b) ε2 ≤ 5%

Figure 2.6: Coverage regions (in red) defined by (a) k-NN (α = 7.0%) and (b) Kriging

boundaries (λ = 1.34) for Γ = −84 dBm. The non-coverage region is in blue.

dBm. While the coverage region predicted are very similar, Kriging appears to produce

more smooth boundaries as compared to k-NN. This is mainly because k-NN considers the

nearest k neighbors, and thus two nearby locations could end up with different labels, if the

majority of their respective neighborhoods have different labels. Furthermore, both tend to

create red/blue “holes” due to data points with large/low RSSI values that are very different

from their neighbors.

2.5.5 Impact of TV Service Threshold

While the TV service threshold is chosen to be −84 dBm by the FCC, it would be interesting

to compare k-NN and Kriging boundaries for different Γ values. The results are shown in

Table 2.3. We can see that despite of fairly close performance, Kriging performs generally

better than k-NN in estimating boundaries with a gain as high as 16.5%. More importantly,

both achieve significant and consistent performance improvement over DBA models.
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Γ (dBm) −83 −84 −85 −86

ε2 ≤ 5%

k-NN 53.9 59.4 58.3 74.8

Kriging 56.0 53.9 52.6 58.3

Gain -2.1 5.5 5.7 16.5

ε2 ≤ 10%

k-NN 47.1 47.8 46.3 49.7

Kriging 39.3 41.7 39.4 49.1

Gain 7.8 6.1 6.9 0.6

Table 2.3: ε1 (%) of k-NN and Kriging boundaries for different TV service thresholds for a

bounded ε2. The gain is the reduced amount in ε1 of Kriging compared to k-NN.

2.6 Conclusion and Future Work

In this study, we quantified RSSI prediction performance for both DBA models and Kriging.

We compared the performance of Kriging boundaries against DBA and k-NN boundaries

with data collected at 240 locations over a 4.6 km-by-5 km sub-urban area. Our results

show that since empirical DBA models do not take into account local obstructions, they

tend to over-estimate RSSI, while measurement-based Kriging achieves consistently good

performance. Furthermore, Kriging boundaries achieves a type-I error rate of 46.1%, which

is 6.5% lower than DBA and k-NN boundaries respectively while keeping type-II error rate

under a low limit (5%) for a given service threshold (-84 dBm), and such improvement also

exists for different thresholds.

There are several interesting future directions. First, OK assumes a constant mean and

isotropic semivariogram, while more advanced Kriging techniques can relax these assump-

tions and potentially improve prediction accuracy. For instance, the Universal Kriging [56]

assumes a general polynomial trend model by expressing the mean as a linear combination of

polynomials. Suitable path loss models such as Longley-Rice can also be used for the mean

field component, which mitigates adverse effects of non-stationarity in measurement data.

Second, current radio mapping focuses on spatial interpolation, while wireless radio sig-
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nals exhibit temporal variations due to shadowing and changes on the transmitter side (e.g.,

power) etc. Hence, it would be interesting to interpolate RSSI in both space and time based

on real-time measurements collected from a network of low-cost spectrum sensors.

Third, as measurements are collected over a wider geographical area, significant dispar-

ities in the observed RSSI begin to appear. For example, some isolated locations report

very weak RSSI (which are likely to be dominated by noise) that is not well-represented

by path loss models. This implies the heuristic – apply Kriging post classification to the

inside/outside-coverage regions separately to obtain more reliable Kriging results [57] and

continue performing joint classification and interpolation iteratively until convergence.
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Chapter 3

AUCTION-BASED CROWDSENSING FOR
SPATIAL-STATISTICS-BASED RADIO MAPPING

In this previous chapter, we considered the problem of applying Kriging, a measurement-

driven spatial-statistic-based technique, to estimating RSSI and coverage boundaries in order

to construct accurate radio maps for white space networking. We showed that the Kriging-

based approach outperforms the DBA models in coverage estimation by significantly reducing

the type-I error rate, while keeping the type-II error rate under a certain limit.

Moving forward, Kriging can potentially facilitate white space networking by enhancing

real-time radio mapping and improving spatial-temporal white space identification. It can

also provide accurate estimation of protection areas for incumbents and licensed SUs in other

shared bands including the 3.5 GHz CBRS band. However, Kriging requires a reasonable

amount of local spectrum sensing data in the geographical region of interest, scaling such

data collection via (either static or dynamic) sensors or measurement campaigns to wide-

aware spectrum sensing inevitably meets cost limitations. One approach of low-cost wide-

area spectrum sensing is to leverage crowdsensing, that is, outsourcing sensing tasks to

spatially distributed users in the targeted region with mobile devices that are outfitted with

spectrum sensors. Prior works such as [58–60] on crowdsensing implicitly assumes voluntary

user participation, which may not be true in practice, because users would have to contribute

their own resources (e.g., computing power, storage, and battery) for sensing and thus expect

some form of compensation in return.

In this chapter, we study the problem of incentiving users to participate in crowdsensing

for spatial-statistics-based radio mapping under the reverse-auction framework [61–64]. In

this framework, participating users want to sell their location-specific spectrum data to the
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platform (a centralized server that collects spectrum data and performs radio mapping),

each of which has a privately known sensing cost and receives a payment when selected. We

consider self-interested users who tend to declare higher prices (bids) than their true costs in

order to maximize their own utility (i.e., payment minus true cost). We develop a computa-

tionally efficient, individually rational, budget feasible, and truthful incentive mechanism for

crowdsensed radio mapping. We make the following specific contributions:

• We propose a crowdsensing system that periodically acquires spectrum data from users

to construct radio maps via spatial statistics under a budget constraint.

• We develop an auction-based budget-free mechanism with a cardinality constraint and

show that it is truthful, computationally efficient, and individually rational. We further

develop a budget-feasible mechanism by translating the budget constraint into the best

cardinality constraint using the bisection method.

• We conduct extensive simulations to evaluate the performance of the proposed mech-

anism and compare it against the state-of-art budget-feasible mechanism in [64]. Our

results reveal that the proposed mechanism makes full use of the budget and performs

significantly better compared to the baseline with improvements of 18%-22% in terms

of maximizing the average prediction error variance (Kriging variance) reduction.

The remainder of this chapter is organized as follows. Section 3.1 reviews related work

and Section 3.2 introduce preliminaries for this work. Our system model and mechanism are

presented in Sections 3.3 and 3.4, respectively. Simulation results are provided in Section 3.5.

This chapter is concluded in Section 3.6.

3.1 Related Work

In crowdsensing, users are usually assumed to be self-interested and tend to take strategic

actions. Hence, it is desirable to design a truthful mechanism that motivates users to reveal

their true costs. In [62], authors proposed an auction-based truthful mechanism for a scenario
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where sensing tasks have predetermined location tags and values, and users are only allowed

to compete for tasks within their own coverage regions. However, the implicit assumption was

that collected data was not location-specific and the budget constraint was not considered.

In [65] and [66], similar geometric coverage models for tasks and users were considered, but

they do not fit our radio mapping scenario. Instead, we consider a general task without

location tags and all users are allowed to compete for it. Based on user locations, the spatial

sampling approach is taken to select users.

In [63,64], authors proposed truthful and budget-feasible incentive mechanisms for general

submodular monotone functions. Their mechanisms adopt the proportional share allocation

rule, and winner selection stops when the bid of next user exceeds a proportional share of

its contribution. Although this rule provides an upper bound on the actual payment, which

ensures budget-feasibility, the bound may be loose and thus the mechanism creates budget

surplus. In our mechanism, we adopt the bisection method to make full use of the budget.

3.2 Preliminaries

In this section, we briefly review Kriging approach for spatial interpolation and describe the

spatial sampling design problem for Kriging. We then introduce the Myerson’s characteri-

zation theorem that specifies the sufficient and necessary conditions for truthfulness.

3.2.1 Statistical Interpolation - Kriging

As described in the previous chapter (Section 2.2), Kriging employs a Gaussian random field

model for RSSI at a point x, which is given by Z(x) = µ(x) + δ(x), where µ(x) and δ(x) are

the mean and the residual at location x, respectively. The former term captures path loss

and shadowing at different locations, and the later represents possible sampling errors.

At the core of this engine is the semivariogram γ(·) that captures the variance between

two points as a function of their distance. In practice, γ(·) is estimated from measurements

and then fitted with parametric models such as spherical and exponential models. In OK,

Z(x) is assumed to be intrinsically stationary, i.e., E[Z(x)] = µ(x) = µ and E[(Z(x1) −
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Z(x2))2] = 2γ(h), where µ is an unknown constant and h = ||x1 − x2|| (assuming isotropic

semivariograms). The relationship between γ(h) and the covariance function C(h) is C(h) =

C(0)− γ(h). In this work, we focus on OK due to its popularity.

Given a set of measurements A at locations x1, x2, ..., xn, the predicted value at an un-

measured point x0 is given by Ẑ(x0) =
∑n

i=1 ωiZ(xi). Minimization of the MSE E[(Ẑ(x0)−

Z(x0))2] with respect to {ωi} leads to a set of linear equations. The optimal coefficients are

given by ω∗ = (ω∗i )i∈A = Σ−1
AAΣAx0 , where ΣAA is the covariance matrix and ΣAx0 is the

vector of cross-covariances between {Z(xi)} and Z(x0). The minimized MSE, also called the

Kriging variance (K-var), is given by

σ2
x0|A = σ2

x0
− ΣT

Ax0
(Σ−1
AA)TΣAx0 , (3.1)

where σ2
x0

is the K-var when A = ∅1. Since K-var measures the prediction uncertainty at an

unmeasured location, it is often used as a estimator design metric, that is, a smaller K-Var

value implies a better estimator.

3.2.2 Spatial Sampling Design

A classic spatial sampling design problem discussed in [67] is the following. Consider a set

of candidate sample locations C and a set of unmeasured locations D, which are often a

grid discretization of a continuous region. The task is to choose a subset A ⊆ C up to k

elements that minimizes the average K-var over D, or equivalently, maximizes the average

K-var reduction2 φ(A), which is given by

φ(A) =
1

|D|
∑
x0∈D

(
σ2
x0
− σ2

x0|A
)

(3.2)

1Strictly speaking, σ2
x0

is undefined according to Eq. (3.1) when |A| = 0; when |A| = 1, it depends on
both C(0) and µ, which is unknown. Due to this reason, GeoR [55], the widely-used geo-statistics library
in R, requires at least two data points for Kriging. In our implementation, when A = ∅ (no data points
in the region of interest), we bypass the issue by introducing two data points that are very far away from
the target region; for |A| = 1, we simply add a second data point very close to the existing one.

2An alternative metric is the mutual information [68]. Since the two criteria share very similar properties
such as submodularity and monotonicity, we focus on the average K-var reduction in this work. However,
our discussion also extends to the mutual information criterion. In Chapter 4, we will consider the use of
mutual information for spatial sampling design.
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Since the problem maxA⊆C,|A|≤k φ(A) is NP-hard in general [69], it is difficult to compute

the optimal solution. Nevertheless, the existence of structural properties in φ(A) including

submodularity and monotonicity [69, 70] with respect to the cardinality of A allows us to

obtain an approximate solution via heuristic-based (greedy) algorithms.

Formally, a set function f : 2C → R is called submodular, if f(A ∪ {x}) − f(A) ≥

f(B ∪ {x}) − f(B) for any A ⊆ B ⊆ C and any x ∈ C \ B. The notion of submodularity

describes the diminishing returns behavior: adding a new element increases f more, if there

are fewer elements so far, and less, if there are more elements. A set function f : 2C → R is

said to be monotone, if f(A) ≤ f(B) for any A ⊆ B ⊆ C. In fact, φ(A) is also non-negative.

It was shown in [71] that for a submodular, monotone, and non-negative function, a greedy

algorithm finds an approximate solution guaranteed to be within 1 − 1/e of the optimal

solution, and no polynomial-time algorithm can achieve a better guarantee unless P = NP.

3.2.3 Myerson’s Characterization Theorem

In mechanism design, truthfulness refers to a dominant strategy that incentives users to

report true costs regardless of other users’ bids [61]. Let the cost, bid and payment of user i be

ci, bi and pi, respectively. A mechanismM consists of a selection rule χ : (b,x)→ 2[n], and a

payment rule ψ : (b,x)→ Rn
+, where b and x are the bid and location vectors respectively.

Since the cost is the only private parameter, the sufficient and necessary conditions for

truthfulness have been specified in the Myerson’s characterization theorem [63,72].

Theorem 3.1 (Myerson’s Characterization). In single parameter domains, a mechanism

M = (χ, ψ) is truthful if and only if:

1. χ is monotone: ∀i ∈ Ω, if b′i ≤ bi then i ∈ χ(bi, b−i,x) implies i ∈ χ(b′i, b−i,x) for any

given b−i, that is, a winner keeps winning if it unilaterally decreases his bid, and

2. ψ pays winners the threshold amounts: pi = sup{bi : i ∈ χ(bi, b−i,x)} for any given

b−i, that is, the payment is the maximum bid that still wins,
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where b−i = (bj)j 6=i, j∈Ω denote the bids of users except user i.

A simple example is the single-good second-price (reverse) auction with private costs [61],

where the user with the lowest bid is the only winner (selection rule), who is paid the second

lowest bid (payment rule). We may verify its truthfulness with Myerson’s characterization.

First, the selection rule is monotone, that is, the winner still wins if it submits an even lower

bid. Second, the winner is paid the threshold amount: if it submits a bid higher than the

second lowest bid, it is no longer the winner. Hence, the second-price auction is truthful.

3.3 System Model

Figure 3.1 illustrates the proposed system for crowdsensed radio mapping. It consists of a

centralized server called platform, and users equipped with mobile devices that are capable

of spectrum sensing. Users are spatially distributed and connected to the platform. We

assume that each user knows its current geo-location with high accuracy and is able to

collect high-quality3 spectrum data.

The platform seeks to acquire sensing data from users periodically for the spectrum band

of interest. At the beginning of a period, the platform announces a sensing request without

specific location tags, which contains detailed sensing instructions (such as center frequency,

sampling rate etc.). Each user i in the desired region D can compete for the task, who will

incur a privately known cost ci > 0 for sensing. We assume no entry or any other overhead

costs, that is, a user does not incur a fee to bid nor does it pay to communicate with the

platform. Each user i who is interested in participation submits its current location xi and

a bid bi ≥ ci, the minimum payment it is willing to accept. Denote the set of bidders as

Ω = {1, 2, ..., n} at locations {x1, x2, ..., xn}, where n ≥ 2 and xi ∈ D. Upon receiving a bid-

3Data quality depends on various factors in practice such as noise power and local environment (e.g.,
indoor/outdoor). In this paper, we assume that sensing-capable devices (or antennas) are located outdoors,
whose noise power are low enough to reliably sense the presence of primary signals in bands of interest.
For instance, if a user wants to compete for sensing tasks in TV bands, its device should be able to sense
as low as the service threshold of -84 dBm over a 6 MHz channel for full-power digital TV [19]. To enforce
this assumption, the platform may ask users to report their noise levels and local environments, and only
allow qualified users to compete for a particular task.
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Sensing task 

(Location, bid) 

Notify and pay winners 

Sensing Data Platform 
CR Users 

Figure 3.1: Proposed crowdsensing system for radio mapping that implements an auction-

based incentive mechanism. In each period, the platform announces a sensing task without

specific location requirements, and interested users can sign up by submitting their current

locations and bids of their choice. After collecting bids from all users, the platform selects a

set of winners and determines corresponding payments. Payments are then made to winners

in exchange for sensing data.

location profile (b,x) where b = (b1, b2, ..., bn) and x = (x1, x2, ..., xn), the platform selects a

winner subset A ⊆ Ω and determines the payment pi > 0 for each winner i ∈ A (pi = 0 for

i /∈ A). Finally, it pays winners in exchange for the sensing data.

We assume that users are rational and make decisions in their best interest. Each user

i has a utility of pi − ci, if selected, and 0 otherwise. We are interested in the strategic

case, in which each user aims to maximize its own utility by taking strategic actions, for

example, submitting a bid (possibly) much higher than its true cost. In addition, we assume

non-collaborative users who are honest in following the protocol. Considerations of security

and privacy enhancement within this framework is left as future work.

The platform aims to maximize φ(A)4 for a given budget B. We assume that γ(h) or

4The metric of “average” K-var reduction implicitly assumes equally important subregions with the same
accuracy requirement. In practice, accuracy requirement may vary over subregions, and those that require
greater interpolation accuracy will need more samples in general. To account for this case, our proposed
framework may be generalized in the following two ways. First, the platform may assign larger budgets to
more important subregions and smaller budgets to others, given the same budget in total. Alternatively,



38

C(h) is known to the platform as prior knowledge for the current period. Our objective is

to design a mechanism M = (χ, ψ) with the following properties:

• Computational efficiency: Selection and payment rules can be computed in poly-

nomial time5.

• Individual rationality: Each winner has a non-negative utility, i.e., pi ≥ bi for i ∈ A.

• Budget feasibility: The total amount of payments does not exceed a given budget

B, that is,
∑

i∈A pi ≤ B.

• Truthfulness: It is a dominant strategy for users to report their true costs regardless

of other users’ bids.

The first three properties are desirable features of a real-world crowdsensing system, and

the final property counteracts the possibility of market manipulation and strategizing.

3.4 Incentive Mechanism Design

In this section, we develop an auction-based budget-free mechanism with a cardinality con-

straint. We then propose a budget-feasible version that enforces the budget constraint by

translating it to a carefully chosen cardinality constraint. We show that the proposed mech-

anism is computationally efficient, individually rational, budget feasible, and truthful, and

explain how it works through an illustrative example.

3.4.1 Budget-Free Mechanism with a Cardinality Constraint

In the budget-free case, the platform takes a bid-location profile (b,x) that consists of n

users (denoted as Ω = {1, 2, ..., n}) and a cardinality constraint k as input and wants to

the platform may adopt a “weighted” criterion and assign more weights to unmeasured locations from
subregions that require greater accuracy. As a result, the platform can select more samples from those
subregions by maximizing the “weighted” φ(A).

5The computational complexity is evaluated in terms of the number of calls to φ(A).
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solve the following constrained optimization problem:

max
A⊆Ω

φ(A) s.t. |A| ≤ k. (3.3)

Since both individual rationality and truthfulness will be enforced in payment determi-

nation using Theorem 3.1, they are not imposed as explicit constraints. While the problem

in Eq. (3.3) is very similar to the classical spatial sampling problem (Section 3.2.2), a greedy

algorithm that only considers user locations and iteratively selects users with the maximum

marginal contribution cannot yield a truthful mechanism. In other words, a winner can sub-

mit an arbitrarily high bid and still win give the above greedy algorithm, since the selection

rule is independent of users’ bids. Therefore, we need to jointly consider location and bid

for winner selection in order to achieve truthfulness. In this work, we adopt the normalized

marginal contribution (i.e., the marginal contribution of a user divided by its bid) as the

metric [63,64], which will yield a monotone selection rule, as we will show later.

The budget-free mechanism is provided in Algorithm 1. As we can see, the selection

rule (Lines 3-7) is a greedy algorithm that selects winners iteratively according to their

normalized marginal contribution, until k winners are selected. Denote the set of winners up

to the (j-1)-th iteration as Aj−1, where j ≥ 1 and A0 = ∅. When selecting the j-th winner,

the marginal contribution of each user i ∈ Ω \ Aj−1 is mAj−1
(i) = φ(Aj−1 ∪ {i})− φ(Aj−1).

Define [j] = arg maxi∈Ω\Aj−1

mAj−1
(i)

bi
, which is the index of the j-th winner over Ω. To

simplify notation, we write m[j] instead of mAj−1
([j]). Note that φ(Aj) =

∑
i≤jm[i] for all

j ≤ k. The submodularity of φ(A) implies that

m[1] ≥ m[2] ≥ ... ≥ m[k], (3.4)

and the selection order implies that

m[1]

b[1]

≥
m[2]

b[2]

≥ ... ≥
m[k]

b[k]

. (3.5)

We now show that Eq. (3.5) is true by contradiction. Consider winners [i] and [j], where

i < j. Suppose that
m[i]

b[i]
<

m[j]

b[j]
. Denote the marginal contribution of the j-th winner in the
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Algorithm 1 budget free mechanism(b,x, k)

Input: (b,x) – bid-location profile, k – cardinality constraint

Output: A – selected subset, p – payments

1: Ω← {1, 2, ..., n} // Or Ω← {x1, x2, ..., xn}

2: // Selection Rule

3: A ← ∅, U ← Ω

4: while U 6= ∅ and |A| < k do

5: j ← arg maxi∈U (φ(A ∪ {i})− φ(A)) /bi

6: A ← A∪ {j}, U ← U \ {j}

7: end while

8: // Payment Rule

9: for i ∈ Ω do pi ← 0 end for

10: for i ∈ A do

11: Ω′ ← Ω \ {i}

12: A′ ← ∅, U ← Ω′

13: while U 6= ∅ and |A′| < k do

14: j ← arg maxl∈U (φ(A′ ∪ {l})− φ(A′)) /bl
15: m′j ← φ(A′ ∪ {j})− φ(A′) m̃i ← φ(A′ ∪ {i})− φ(A′)

16: m̃i ← φ(A′ ∪ {i})− φ(A′)

17: pi ← max{pi, m̃im′j · bj}

18: A′ ← A′ ∪ {j}, U ← U \ {j}

19: end while

20: end for

21: return A,p
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i-th iteration as m′[j]. In the presence of submodularity, we have m′[j] = mAi−1
([j]) ≥ m[j] =

mAj−1
([j]), since Ai−1 ⊆ Aj−1. Hence, it holds that

m[i]

b[i]
<

m[j]

b[j]
≤

m′
[j]

b[j]
. In other words, the

j-th winner would have been selected earlier in the i-th iteration, which is a contradiction

with our assumption. Therefore, Eq. (3.5) is true.

Next comes payment determination. The key is to find the maximum bid each winner can

submit that allows it to win. The corresponding pseudo-codes are in Lines 10-20. Consider

the i-th winner among Ω, denoted as [i]. Define a new set Ω′ = Ω\{[i]}. Similar to Eq. (3.5),

sort users in Ω′ according to their normalized marginal contribution. Denote the first (j−1)

winners among Ω′ as A′j−1, and the index of the j-th winner as [j]′. In order for winner [i]

to replace winner [j]′, its normalized marginal contribution needs to be larger than that of

winner [j]′, that is,
mA′j−1

([j]′)

b[j]′
<
mA′j−1

([i])

b[i]

. (3.6)

So the maximum bid (i.e., the conditional threshold payment) for winner [i] that allows it

to replace winner [j]′ is

p[i],[j]′ =
mA′j−1

([i])

mA′j−1
([j]′)

· b[j]′ . (3.7)

Note that as long as winner [i] is ahead of any winner [j]′ ∈ Ω′ in terms of ordering, where

j ≤ k, it is guaranteed that the i-th winner still wins. Therefore, the maximum bid (i.e., the

threshold payment) for the i-th winner is

p[i] = max
1≤j≤k

{p[i],[j]′}, i = 1, 2, ..., k. (3.8)

3.4.2 Budget-Feasible Mechanism

We now consider the budget constraint. Denote the problem in Eq. (3.3) and the correspond-

ing winner set as H(b,x, k) and Ak respectively. The total payment is Ptotal(k) =
∑

i∈Ak pi,

which is a function of k. Then the budget-feasible version aims to solve the following problem:

max
k
H(b,x, k) s.t. Ptotal(k) ≤ B. (3.9)
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Suppose k1 < k2 and denote the corresponding winner sets as A(1) and A(2). It is easy to

see that A(1) ⊂ A(2) because both adopt the same selection rule. Since φ(A) is monotonically

increasing, a larger k value results in a larger φ(A) value. Hence, Eq. (3.9) is equivalent to

maximizing k such that Ptotal(k) ≤ B. One simple way is to enumerate every k value in

order until the total payment exceeds the budget. Alternatively, the bisection method may

be used to speed up the search process by leveraging the fact that Ptotal(k) is a monotonically

increasing function of k.

Lemma 3.1. The total payment of the budget-free mechanism is a monotonically increasing

function of k.

Proof. Suppose k1 < k2. Let the outputs of the budget-free mechanism given k1 and k2 be

(A(1),p(1)) and (A(2),p(2)) respectively. As in Eq. (3.5), we sort users according to their

normalized marginal contribution, and denote the i-th winner as [i]. Then, we have A(1) =

{[1], [2], ..., [k1]} ⊂ A(2) = {[1], [2], ..., [k2]}. Denote the payments as {p(1)
[i] : i = 1, 2, ..., k1}

and {p(2)
[i] : i = 1, 2, ..., k2}. For any i ≤ k1, it holds that

p
(2)
[i] = max{ max

1≤j≤k1
p[i],[j]′ , max

k1<j≤k2
p[i],[j]′} (3.10)

= max{p(1)
[i] , max

k1<j≤k2
p[i],[j]′} ≥ p

(1)
[i] .

For any i ∈ (k1, k2], p
(2)
[i] > 0. Hence, we have

∑
1≤i≤k2 p

(2)
[i] >

∑
1≤i≤k1 p

(1)
[i] .

The budget-feasible mechanism is provided in Algorithm 2. The bisection method requires

a lower bound l for k such that the budget constraint can be met, and an upper bound u such

that the budget constraint cannot be met. A tolerance value ε is also needed as the stopping

condition. We assume that the budget is neither too small nor too large, so that the winning

set contains at least one sample but not all samples are affordable. Hence, we set l = 1,

u = n, and ε = 1 as in Line 1. In the while loop (Lines 2-12), the midpoint between u and

l is fed to the budget-free mechanism to check the budget constraint: if yes, the midpoint

becomes the new lower bound, and the new upper bound otherwise. The number of calls to

the budget-free mechanism is log2((u− l)/ε) ≈ log2(n).
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Algorithm 2 budget feasible mechanism(b,x, B)

Input: (b,x) – bid-location profile, B – budget

Output: A – selected subset, p – payments

1: l← 1, u← n, ε← 1

2: while u− l > ε do

3: k ← b(u− l)/2c

4: (A′,p′)← budget free mechanism(b,x, k)

5: Ptotal ←
∑

i∈A′ p
′
i

6: if Ptotal ≤ B then

7: l← k

8: A ← A′, p← p′

9: else

10: u← k

11: end if

12: end while

13: return (A,p)

3.4.3 Analysis

Now we prove that the proposed budget-feasible mechanism is also computationally efficient,

individual rational, and truthful.

Lemma 3.2. The proposed budget-feasible mechanism is computationally efficient, that is,

the selection and payment rule can be computed in polynomial time.

Proof. For the budget-free mechanism, the complexity of the greedy selection is O(kn),

since finding the user with maximum normalized marginal contribution takes O(n) time and

we need to find k such users. For payment determination, the greedy process is executed

repeatedly to determine each winner’s payment. So the complexity is O(k2n) for the budget-

free mechanism. Since k is bounded by n, the overall complexity for a general k is bounded
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by O(n3). Moreover, the budget-feasible mechanism uses the bisection method that requires

log2(n) calls to the budget-free mechanism in the worst case. Hence, the overall complexity

becomes O(n3 log2 n), which is in polynomial time.

Lemma 3.3. The proposed budget-feasible mechanism is individually rational.

Proof. Since p[i] ≥ p[i],[j]′ for i = 1, 2, ..., k, it suffices to prove that p[i],[j]′ ≥ b[i] for some j.

Observe that the first (i−1) winners over Ω are the same with those over Ω′, i.e., A′i−1 = Ai−1.

Due to the absence of winner [i] in Ω′, some other user now becomes winner [i]′, who ranks

behind winner [i] in the original set when it is present, that is,

mAi−1
([i]′)

b[i]′
≤
mAi−1

([i])

b[i]

⇒
mA′i−1

([i]′)

b[i]′
≤
mA′i−1

([i])

b[i]

(Since A′i−1 = Ai−1)

⇒ p[i],[i]′ =
mA′i−1

([i])

mA′i−1
([i]′)

· b[i]′ ≥ b[i] (3.11)

Hence, it holds that p[i] ≥ p[i],[i]′ ≥ b[i] for i = 1, 2, ..., k.

Lemma 3.4. The proposed budget-feasible mechanism is truthful.

Proof. We first prove that the selection rule is monotone. Consider the i-th winner, denoted

as [i]. If winner [i] announces a bid b′[i] < b[i], it is true that
m[i]

b′
[i]
>

m[i]

b[i]
≥ m[k]

b[k]
and thus winner

[i] still wins. In other words, bidding a smaller value cannot push winner [i] backwards in

the sorting. Hence, the selection rule is monotone.

We then prove that the payments are threshold amounts. Assume that winner [i] an-

nounces a bid b[i] > p[i]. By definition, we know b[i] > p[i],[j]′ for all 1 ≤ j ≤ k and b[i] > p[i],[k]′

in particular. It means that when winner [i] bids this amount, it will not be placed ahead of

the k-th winner, even if it is included in the sorting again. Hence, winner [i] cannot win by

bidding b[i] > p[i] and p[i] the threshold payment to winner [i]. By invoking Theorem 3.1, it

holds that the proposed budget-feasible mechanism is truthful.

The above lemmas prove the following theorem.
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Theorem 3.2. The proposed budget-feasible mechanism is computationally efficient, indi-

vidually rational, and truthful.

3.4.4 An Illustrative Example

We use the example in Figure 3.2 to illustrate the proposed incentive mechanism. The square

is the region of interest for radio mapping, which is discretized into a mesh grid of 9 locations.

There are four interested users located at x1, x2, x3, x4, labeled as 1 through 4. Suppose that

they bid 0.1, 0.2, 0.3, and 0.4, respectively and the budget is 0.5. The semivariogram γ(h)

is a spherical model, given by γ(h) = a+ (s− a)
(

3
2
(h
r
)− 1

2
(h
r
)3
)

for 0 ≤ h ≤ r, and γ(h) = s

for h > r, where a = 0, s = 5 and r = 3. Values of φ(A) are given in Table 3.1.

(1,1) 

(-1,-1) 

Locations to be 
interpolated 
User locations 

   : (0.3, 0.6) 
   : (-0.7, 0.2) 
   : (0.5, -0.5) 
   : (0, -0.5) 

x1

x4

x2

x3
x1
x2
x3
x4

Figure 3.2: Topology of an illustrative example for the proposed incentive mechanism. In

this example, there are a total of four users (red squares) who are interested in participating

crowdsensing, and the platform wants to recruit a set of users for a given budget and use

their sensing data to interpolate the RSSI values at the unmeasured locations (back circles).
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A φ(A) A φ(A)

∅ 0 {2, 3} 6.38

{1} 4.34 {2, 4} 5.99

{2} 4.29 {3, 4} 5.23

{3} 4.29 {1, 2, 3} 7.03

{4} 4.55 {1, 2, 4} 6.89

{1, 2} 6.00 {1, 3, 4} 6.54

{1, 3} 6.04 {2, 3, 4} 6.55

{1, 4} 6.22 {1, 2, 3, 4} 7.20

Table 3.1: Average K-var reduction φ(A) for any given subset A ⊆ {1, 2, 3, 4}.

We first demonstrate how the budget-free mechanism works. Observe that the greedy

selection order by the normalized marginal contribution is given by: 1 → 2 → 3 → 4. The

process of computing threshold payments for a single and two winners (i.e., k = 1 and 2) is

as follows. For k = 1, we have [1] = 1 (the only winner is 1):

• In the absence of [1], the only winner is [1]′ = 2. To compute its payment, we have

A′0 = ∅ and p[1],[1]′ =
mA′0

([1])

mA′0
([1]′)
· b[1]′ = 4.34

4.29
·0.2 ≈ 0.202, which means that p[1] = p[1],[1]′ =

0.202. Hence, the payment to the sole winner is 0.202.

For k = 2, we have [1] = 1 and [2] = 2:

• In the absence of [1], winners are [1]′ = 2 and [2]′ = 3.

1. A′0 = ∅, p[1],[1]′ =
mA′0

([1])

mA′0
([1]′) · b[1]′ = m∅(1)

m∅(2) · b2 = 4.34
4.29 · 0.2 ≈ 0.202;

2. A′1 = {[1]′} = {2}, p[1],[2]′ =
mA′1

([1])

mA′1
([2]′) · b[2]′ =

m{2}(1)

m{2}(3) · b3 = 6.00−4.29
6.38−4.29 · 0.3 ≈ 0.245;

3. p[1] = max{p[1],[1]′ , p[1],[2]′} = 0.245;
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• In the absence of [2], winners are [1]′ = 1 and [2]′ = 3.

1. A′0 = ∅, p[2],[1]′ =
mA′0

([2])

mA′0
([1]′) · b[1]′ = m∅(2)

m∅(1) · b1 = 4.29
4.34 · 0.1 ≈ 0.099;

2. A′1 = {[1]′} = {1}, p[2],[2]′ =
mA′1

([2])

mA′1
([2]′) · b[2]′ =

m{1}(2)

m{1}(3) · b3 = 6.00−4.34
6.04−4.34 · 0.3 ≈ 0.293;

3. p[2] = max{p[2],[1]′ , p[2],[2]′} = 0.293;

• Hence, the payments to winners [1] = 1 and [2] = 2 are 0.245 and 0.293 respectively,

and the total is 0.538.

Now we consider the budget-feasible mechanism. The bisection method is first initialized

with l = 1 and u = 4. Then it checks the budget feasibility when k = b(4 + 1)/2c = 2, and

realizes that the budget constraint cannot be met (as shown above). So it sets u = 2. Now

since the gap between the lower and upper bounds is within the tolerance (i.e., ε = 1), the

mechanism returns the result when k = l, which is a budget-feasible solution.

3.5 Performance Evaluation

In this section, we evaluate the performance of proposed mechanisms and compare them

against the baseline mechanism in [64]. For convenience, we use the abbreviations BFreeMech

and BFeaMech for the budget-free and budget-feasible mechanisms, respectively.

3.5.1 Baseline Mechanism

In [64], authors proposed a randomized budget-feasible mechanism for general submodular

monotone functions, which is computationally efficient, individually rational, and truthful.

There are two main differences between their mechanism and ours. First, their mechanism is

randomized: with a probability of 0.4, it returns a single user with the maximum (unnormal-

ized) marginal contribution and pays it B; otherwise, it runs a greedy scheme that selects

multiple users and determines payments based on Myerson’s characterization. The logic

behind the randomness is the following. In some extreme cases, there exists some user with

a very large marginal contribution and a very high cost (that is less than B). As a result,
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it will never be selected by a greedy algorithm, which results in unbounded performance.

Hence, the randomized approach is adopted in order to derive a certain performance bound.

Second, in their greedy scheme, the budget constraint is enforced through the proportional

share allocation condition. Specifically, the greedy scheme selects the user with the largest

normalized marginal contribution in the j-th iteration only if b[j] ≤ B
2

m[j]∑
i∈Aj−1∪{[j]}

mi
, and

stops otherwise. This condition ensures that the final payment to winner [i] in the winner

set Ak is bounded above by
m[i]

φ(Ak)
· B; then the total payment will be bounded by B since∑

i≤km[i]

φ(Ak)
· B = B. Since it is very unlikely for multiple samples to have a φ(A) value than a

single sample’s in radio mapping, we consider their greedy scheme as the baseline mechanism.
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Figure 3.3: Sample topology with 100 randomly distributed users (in blue dots) over a 10km-

by-10km region. The region of interest is the inner red square, which is discretized into a

total of 121 locations (in black dots).
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3.5.2 Simulation Setup

A sample topology with 100 users is provided in Figure 3.3, whose locations are randomly

generated from the spatial Poisson random process within a 10km-by-10km region. The

region of interest is the 8km-by-8km square, which is discretized into a mesh grid of 121

locations. This is because in practice estimation errors tend to be dominated by the border

areas [46] and hence we focus on radio mapping for the inner region. User costs are i.i.d.

random variables drawn from the uniform distribution over [0, κmax]. Since the normalized

marginal contribution is used as the metric in our proposed mechanism, the scale of κmax

has no impact on winner selection and payments are proportional to κmax. Without loss

of generality, we set κmax = 1. The semivariogram γ(h) is an exponential model obtained

from a real-world measurement campaign in a suburban area [73], which is given by γ(h) =

a+ (s− a)
(
1− e−3h/r

)
, where a = 6.48, s = 22.02, and r = 2.11.

3.5.3 Evaluation of BFreeMech

As discussed in Section 3.4, the budget constraint of BFeaMech is closely related to the

cardinality constraint of BFreeMech. Hence, we are interested in understanding the impact

of the cardinality constraint on Ptotal and φ(A) for BFreeMech. In addition, we define the

payment overhead as the difference between the total payment and the total amount of bids.

In this simulation, we first generated 30 sets of random costs and locations for 100 users.

In each experiment, a particular number of users were randomly sampled from the 100 users;

for the same set of users, BFreeMech was executed with a cardinality constraint varied from

5 to 30. Results were averaged over 30 experiments and are shown in Figure 3.4.

Impact of k on Ptotal

We can observe from Figure 3.4(a) that the average Ptotal is always monotonically increasing

and it tends to increase at a faster rate as k increases. This is mainly because with fewer

users, the platform needs to pay more to the next winner, which leads to a larger increase
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in Ptotal on average. Moreover, for a relatively small k (e.g., less than 15) compared to the

number of users n, we do not observe a significant difference in the average total payment.

When k becomes larger, the average Ptotal tends to be inversely proportional to the number

of participating users. For instance, when k = 25, the average total payment is 21.0 with

n = 40 users, which is almost halved to 9.6 with n = 80 users.

Impact of k on φ(A)

As shown in Figure 3.4(b), the average φ(A) increases as k increases, but the increasing rate

keeps decreasing, because of the submodularity property of φ(A). On the other hand, unlike

Ptotal, the number of users has little effect on the average value of φ(A). It means that the

performance of radio mapping mainly depends on the number of selected users, and more

participating users can effectively reduce the total payment.

Impact of k on payment overhead

As mentioned earlier, the actual payment made to a winner is always higher than its bid to

ensure individual rationality and truthfulness. Hence, for a set A of k winners, we can define

the payment overhead ratio α as

α =

∑
i∈A pi −

∑
i∈A bi∑

i∈A bi
. (3.12)

As illustrated in Figure 3.5, when k is relatively small compared to n, α varies between

0.9 and 1.2 for different values of n. In other words, the platform needs to pay roughly double

the total amount of bids to ensure truthfulness. On the other hands, when k is closer to n

(e.g., more than 20 winners out of 40 users), α tends to increase rapidly. It implies that the

platform may need to limit the number of winners depending on the number of participants,

so as to avoid large payment overheads.
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3.5.4 Comparison with Baseline Mechanism

Now we compare the performance of BFeaMech against the baseline mechanism. For fair

comparison, the same set of user costs and locations was fed to both mechanisms, and results

were averaged over 30 experiments.

Impact of Number of Users

Figure 3.6 illustrates the impact of n with a budget of 5. We can see that the average number

of purchased samples (or selected users) tends to increase linearly as a function of n for both

mechanisms, but the slope of BFeaMech is greater than that of the baseline mechanism

(Figure 3.6(a)). As a result, BFeaMech performs much better than the baseline mechanism

in terms of average φ(A) for the same n, with an improvement of 19.1%-21.2% for different

n (Figure 3.6(b)).

Impact of Budget

Figure 3.7 illustrates the impact of the budget B on the average number of purchased samples

(or selected users) and average φ(A) for both mechanisms. We set n = 100. As shown in

Figure 3.7(a), the average number of purchased samples increases as B increases for both

mechanisms, but it grows much faster for BFreaMech as compared to the baseline mechanism.

The reason is as follows. Suppose that k winners are selected by the baseline mechanism.

It holds that b[k+1] >
B
2

m[k+1]∑
i∈Ak∪{[k+1]}mi

, or equivalently,
m[k+1]

b[k+1]
< 2

∑
i∈Ak∪{[k+1]}mi

B
. In order to

get the (k + 1)-th winner, the budget has to increase in a way so that the right-hand side is

less or equal to the left-hand side. If we plot the average budget as a function of the number

of winners k for the baseline mechanism (Figure 3.8), we can see that it tends to increase

exponentially as k increases, and thus the additional budget needed to get one more winner

keeps increasing. Also notice that the total payment to k winners made by BFreeMech is

much less than the budget required by the baseline mechanism. Since both mechanisms

determine payments in a very similar manner, it implies that the baseline mechanism does
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not make full use of the budget, and a larger budget will lead to a greater surplus. Therefore,

BFreaMech tends to make better use of the additional budget and is able to purchase more

samples than the baseline mechanism for radio mapping.

As shown in Figure 3.7(b), the difference in the number of purchased samples directly

translates into the difference in φ(A). The average φ(A) of both mechanisms is monotoni-

cally increasing as B increases and tends to grow at a lower rate. Nevertheless, BFeaMech

outperforms the baseline mechanism by 18.5%-22.3% in terms of the average φ(A).

3.6 Conclusion and Future Work

In this work, we developed an incentivized crowdsensing system that acquires spectrum data

periodically from users, which aims to maximize the average prediction error (Kriging vari-

ance) variance reduction φ(A) for a given budget. We first proposed a computationally effi-

cient, individually rational, and truthful incentive mechanism with a cardinality constraint.

On top of it, we proposed a budget-feasible mechanism by translating the budget constraint

to a suitable cardinality constraint with the bisection method.

We conducted extensive simulations to evaluate the performance of the proposed mecha-

nisms and compare them against a baseline mechanism. Our results show that the baseline

mechanism does not make full use of the given budget, and the proposed mechanism achieves

significantly better performance over the baseline mechanism, with improvements of 18%-

22% in terms of the average φ(A) for different numbers of users and budgets.

There are several interesting future directions. First, the current objective function as-

sumes homogeneous subregions with the same accuracy requirement. We may extend the

current formulation to account for heterogeneous subregions by assigning weights or distribut-

ing the given budget to reflect various priorities. Second, we have assumed honest users in

this work, but free-riders can provide random data without actual sensing or malicious users

can report manipulated data in order to corrupt the radio map. It would be interesting to

address the above issues and enhance the proposed system with security measures.
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Figure 3.4: Impact of the cardinality constraint k on Ptotal and φ(A). (a) Average Ptotal as a

function of k for different n (number of users). We observe that Ptotal increases monotonically

with k and decreases as n increases. (b) Average φ(A) as a function of k for different numbers

of users. We observe that the average φ(A) increases with k and it is not affected by n.
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Figure 3.5: Average payment overhead ratio as a function of k for different n (number of

users). We observe that when k is relatively small as compared to n, α fluctuates between 0.9

and 1.2, which implies that the platform needs to roughly double the amount of payments

to achieve truthfulness. In contrast, with n = 40 and when k gets closer to n, we observe a

significant increase in payment overhead.
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Figure 3.6: Impact of number of users n on the performance of BFeaMech and the baseline

mechanism. (a) Average number of winners or purchased samples as a function of n. (b)

Average φ(A) as a function of n. We observe that BFeaMech consistently achieves an average

value of φ(A) 19.1%-21.2% higher than that of the baseline mechanism for different n.
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Figure 3.7: Impact of budget B on the performance of BFeaMech and the baseline mecha-

nism. (a) Average number of purchased samples as a function of B. (b) Average φ(A) as

a function of B. We observe that BFeaMech achieves an average φ(A) value 18.5%-22.3%

higher than that of the baseline mechanism for different budgets.



57

5 10 15 20

0
2

0
4

0
6

0
8

0

Num of Winners

A
v
g

 B
u

d
g

e
t

Baseline
BFreeMech

Figure 3.8: Average budget as a function of number of winners k for the baseline mechanism

and BFreeMech. For the same number of winners, the average budget required by the

baseline mechanism is higher than the average total payment given by BFreeMech.
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Chapter 4

PRICING-BASED CROWDSENSING FOR
SPATIAL-STATISTICS-BASED RADIO MAPPING

In the previous chapter, we considered the problem of designing an auction-based in-

centive mechanism for crowdsensed radio mapping based on spatial statistics (Kriging). We

showed that the proposed mechanism is computationally efficient, individually rational, bud-

get feasible, and truthful, and it outperforms the baseline mechanism in terms of maximizing

the average prediction error reduction.

In this chapter, we employ Gaussian Process (GP) [68, 74] (a generalization of Krig-

ing) as the underlying statistical interpolation technique and incorporate data quality into

Mutual Information (MI) [68], a metric that measures the performance of radio mapping.

We consider an alternative design of incentive mechanism based on pricing [75–77]. In this

framework, the platform determines the value of a set of users based on location, data quality

and its own preferences, which is the amount (of money) it is willing to pay. The platform

then determines and send out one-time price offers to a set of selected users, who have only

one chance to make a decision (either accept or reject) before the offer expires. If the sensing

cost (i.e., sum of energy and opportunity costs) does not exceed the offered price, a rational

user will accept the offer, perform sensing at the reported location, upload data, and receive

the corresponding payment. Therefore, each set of users is associated with a utility, which is

equal to the value minus the total payment. Due to possible offer expiration (due to network

congestion etc.) and rejection, the platform wants to determine who to send offers to (i.e.,

user selection) and how much to offer (i.e., price determination), in order to maximize the

expected utility (EU). We make the following specific contributions:

• We introduce EU and formulate pricing mechanism design as EU maximization. We
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first propose sequential offering, where the platform sends out the best offer to the best

user in each round and keeps offering until the next one is no longer profitable. Then

we generalize it to batched (i.e., single-batch and multi-batch) offering, where a batch

of multiple offers are made in each round.

• For batched offering, we show that EU is submodular in the discrete domain. We

propose a pricing mechanism that first fixes the pricing rule, and selects users based

on Unconstrained Submodular Maximization (USM); it compares different pricing rules

to find the best batch of offers that maximizes EU (instead of the best-case utility)

in each round. We adopt the linear-time deterministic USM algorithm that provides

an 1/3 approximation guarantee [78] for user selection. In practice, however, EU is

difficult to analytically evaluate and thus the Monte-Carlo estimated EU is fed to the

algorithm. We show that its worst-case performance is degraded by estimation errors,

and the reduced amount grows linearly in the number of users given the maximum

estimation error (Theorem 4.1).

• We conduct extensive simulations to evaluate the proposed EU-maximization-based

mechanisms and further compare them against baseline mechanisms that aim to find

the best batch of offers that maximize the best-case utility in each round. Results show

that our single-batch mechanism is better than the single-batch baseline mechanism

with an improvement ranging from 8.5% to 40.5%. If more batches are allowed, our

multi-batch mechanism achieves close performance with the multi-batch baseline mech-

anism, but requires much fewer batches (2.5 versus 7.7 batches on average) and thus

a much smaller delay. Sequential offering works better than the single-batch baseline

mechanism, but has a very large cumulative delay. Offer expiration adversely affected

all mechanisms, but sequential and multi-batch offering are more robust.

The remainder of this chapter is organized as follows. Section 4.1 reviews related work

and Section 4.2 provides a two-user tutorial example to illustrate pricing-based crowdsensed
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radio mapping. Background on submodularity and our models are presented in Section 4.3.

Our pricing mechanisms are presented in Section 4.4 and evaluated in Section 4.5. This

chapter is concluded in Section 4.6.

4.1 Related Work

In recent years, spatial-statistics-based radio mapping has been proposed to better capture

local radio environments to augment spectrum databases. In [50], Phillips et al. applied a sta-

tistical interpolation technique (Ordinary Kriging) to map the coverage of WiMax networks.

Similar techniques have been applied to estimate the coverage area of single-transmitter [73]

and multi-transmitter networks [46] in TV bands. See [79] for a more detailed discussion.

Radio mapping requires a large amount of sensing data, and incentivized crowd-sensing

is considered as an economically viable option. A number of various incentive mechanisms

have been proposed. In [62], Yang et al. studied a platform-centric incentive model, where

users share the reward proportionally in a Stackelberg game. In mechanisms based on reserve

auction [62,65,80], users bid for tasks and receive payments no less than bids when selected.

One main goal for the platform is to design a truthful mechanism that motivates users to

bid at their true private costs. In [81], Koutsopoulos designed an incentive mechanism to

determine participation level and payment allocation to minimize platform’s compensation

cost with guaranteed service quality. Other models include all-pay auction [82], Bayesian

models [81], Tullock contests [83] and posted pricing [75, 77, 84]. Some are proposed in an

online setting with constraints like budget limits [84–86], where users arrive in a random

order and a typical goal is to maximize a certain objective (e.g., revenue).

Incentive mechanisms are typically tailored to the crowd-sensing application being con-

sidered by incorporating factors like user location, data quality and user availability etc. As

an example, in [65], each task has a specific location tag and each user can only compete

for tasks within its service region. In [87], Peng et al. extended the well-known Expecta-

tion Maximization algorithm to estimate the quality of sensing data and incorporated it in

determining rewards. In [77], Han et al. studied a quality-aware Bayesian pricing problem
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where both users’ sensing costs and qualities are random variables, drawn from known dis-

tributions. The goal is to choose an appropriate posted price to recruit a group of users

with reasonable sensing quality, and minimize the total expected payment. If users need to

move to designated sensing locations or are available at different time periods, then incentive

mechanism design is closely coupled with task allocation [76] or scheduling [88].

In this study, we consider incentive mechanism design in an offline setting for crowd-

sensed radio mapping, in which the platform acquires data from a pool of users who are

interested and available for sensing in each period, and measurements are taken at their

current locations. We consider data quality in terms of hardware quality and incorporate

it into the spatial statistical model (GP). Distinct from the auction-based incentive mecha-

nism for crowd-sensed radio mapping [80], we are interested in pricing mechanisms where the

platform makes one-time price offers to a set of selected users and collects data from those

who accept offers. To select users and determine corresponding price offers, we define utility

for the platform to trade the value it obtains from the resulting radio map generated based

on the offered data against the total price (crowdsensing cost). We further introduce EU

to account for possible offer expiration and rejection. We formulate the pricing mechanism

design as EU maximization and propose mechanisms based on USM.

4.2 A Two-User Tutorial Example

In this section, we present our system architecture and provide a two-user tutorial example

to illustrate the basic idea of pricing for crowdsensed radio mapping.

4.2.1 System Architecture

As shown in Figure 4.1, the platform acquires data periodically from users. At the beginning

of each period, the platform broadcasts a sensing task to all users in the area of interest (AoI)

with specific sensing parameters (e.g., center frequency, sampling rate, and FFT bin size) to

ensure a consistent sensing procedure across different hardware. Note that the task does not

specify sensing locations for two reasons. First, there is no need since the platform will take a
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Figure 4.1: Pricing-based crowdsensing system. (1) In each period, the platform first broad-

casts a sensing task to users in the area of interest. (2) Users who are interested and available

for sensing in the current period report location and device type. (3) The platform deter-

mines and sends out one-time offers to selected users. (4) If a selected user decides to accept

the offer, it performs the required sensing task. All selected users will inform the platform of

their decisions (and upload the data) before the deadline. (5) The platform pays users who

contribute data.

sampling approach, that is, selecting a subset of users after they provide their locations. This

is consistent with the underlying spatial statistical model, where only the relative positioning

(instead of absolute locations) that matters for the resulting radio map quality. Second, it

requires extra time and costs for users to move to target sensing locations, which means

extra incentivization costs for the platform and added complexity for mechanism design1.

To avoid excessive delay due to communication delay or failure, network congestion etc.,

each offer has a deadline, by which a decision has to be received by the platform (along with

the data if accepted); otherwise, the offer will be expired.

In this study, we assume no entry or other overhead costs, that is, a user does not incur a

fee to communicate with the platform. We consider users of low mobility (e.g., pedestrians),

1See [76] for more discussions on allocation of tasks with specific locations.
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who are honest in providing their information and following the protocol. We assume small

displacements between reported locations and eventual sensing locations. We will leave the

high-mobility case and security considerations as future work.

4.2.2 A Two-User Scenario

Figure 4.2 illustrates the topology of the two-user example. The goal of the platform is to

estimate the RSSI Z(x) (in dBm) at each location x ∈ U , where U represents the discretized

AoI. There are two users S = {1, 2} at x1 and x2 in the AoI. In each period, each user will

incur a sensing cost ci > 0 and receive an offer pi > 0, when selected by the platform. We

assume rational users, who accept the offer if ci ≤ pi, and reject it otherwise. In the following

discussion, we assume no expired offers and will consider them later in Section 4.4.

Figure 4.2: Topology of the two-user example. The area of interest is discretized into a mesh

grid of 9 points (blue dots). User 1 is at (−0.5, 0), and user 2 is at (0.5, 0) or (0.5,−0.5).

The platform has a valuation function v : 2S 7→ R+ and a pricing function p : 2S 7→ R+.

For each set of users A, there is an associated value v(A) and a total price of all offers p(A) =∑
i∈A pi (i.e., crowdsensing cost for the platform), assuming that each offer is unexpired and
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accepted. It makes sense for the platform, as a rational decision maker, to maximize its

utility (or profit), that is,

max
A⊆S

u(A) = max
A⊆S

(v(A)− p(A)) , (4.1)

which is an important and widely used concept in economics (e.g., rational choice theory [89])

and measures the platform’s preference over the set of users A. For convenience, we also

write v(A), p(A), and u(A) as vA, pA, and uA, respectively.

In practice, however, the probability that an offer is accepted (and data is uploaded to

the platform) by the deadline is less than 1, due to possible expiration and rejection. Hence,

only a subset of users in A accept offers, and u(A) is essentially the best-case utility. In this

case, it makes more senses for the platform to maximize the average-case or expected utility

(EU). More will be discussed later in this example.

4.2.3 How to Valuate Users

In this example, two RSSI data models are considered: one ignoring shadowing and noise,

and the other one is our GP-based model that accounts for both. Both models assume that

any small-scale fading over small distances and time has been averaged out via sensing.

Model I – Shadowing-Free, Noise-Free

This model assumes a constant but unknown path-loss-impaired RSSI at any location within

the AoI. When there are no measurements, both users are equally valuable, since either can

provide accurate estimation. Once one is recruited, a second user has zero marginal value.

Hence, we have v({1}) = v({2}) = v({1, 2}) = v0, where v0 is the value (perceived by the

platform) of estimating RSSIs at U . We set v0 = 4 for later calculations.

Model II (GP) – Shadowing-Aware, Noise-Aware

Under this model, Z(x) for x ∈ U is the sum of path-loss-impaired average RSSI µ(x) and

spatially correlated shadowing δ(x) ∼ N(0, σ2
x) with a covariance function K(d), where d is
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the distance between two locations. Z(xi) for xi ∈ S represents the noisy RSSI measured

by user i, which includes additional hardware noise εi ∼ (0, σ2
εi

) that is independent of

shadowing. Hence, RSSI at each location is modeled as a Gaussian random variable, and

RSSIs at S∪U form a Gaussian random vector, whose joint distribution (Eq. (4.8)) is defined

by a mean vector and a covariance matrix (Eq. (4.9)). More details about the model will be

provided in Section 4.3.2. Mutual information MI(A) (Eq. (4.12)) is used to quantify radio

mapping quality of any subset of users A ⊆ S, and the valuation function v(A) defined in

Eq. (4.14) (with α = 0) is used to translate MI to value that is comparable to payments.

We consider two cases under this model:

• Case 1: Users have different locations but provide data of the same quality. Suppose

x1 = (−0.5, 0), x2 = (0.5, 0.5) and σ2
ε1

= σ2
ε2

= 0.5.

• Case 2: Users have equally good (i.e., symmetric) locations but provide data of different

quality. Suppose x1 = (−0.5, 0), x2 = (0.5, 0) and σ2
ε1

= 0.5 > σ2
ε2

= 0.2.

For illustration, we set K(d) = 15.5 · exp(− d
0.7

) [73] (which is consistent with our later

simulations in Section 4.5) and set the currency κ in v(A) to 10. Valuation of users under

both models is summarized in Table 4.1.

The above highlights a few things. First, apart from the platform’s preferences (e.g.,

choice of valuation function and parameters like κ), the RSSI data model plays an important

role. Second, for a reasonable RSSI data model that considers both shadowing and noise,

user locations are important (e.g., Case 1 of Model II); data quality also matters and affects

valuation (e.g., Case 2 of Model II).

4.2.4 How to Select and Pay Users

At this point, v(·) is available to the platform (Table 4.1). The next step is to select a subset

of users and determine their price offers. This process is called “incentivizing”.
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v(∅) v({1}) v({2}) v({1, 2})

Model I 0 4 4 4

Model II - Case 1 0 2.18 1.76 3.48

Model II - Case 2 0 2.18 2.23 3.82

Table 4.1: Valuation of users in the two-user example.

Deterministic Cost

If user devices are treated as specialized spectrum sensors, then sensing costs are dominated

by energy (or battery) costs [90]. In this case, it is reasonable to assume deterministic sensing

costs, which can be inferred from the task and device type. Since the platform knows {ci},

it can set p{i} = ci to minimize payments while guaranteeing offer acceptance, and search

for the best set of users.

Suppose c1 = 2 and c2 = 1.5. Then p{1} = 2, p{2} = 1.5 and p{1,2} = 3.5. It is easy to

see that A∗ = {2} leads to the maximum utility in each case. If c1 = c2 = 1.5, we have

p{1} = p{1} = 1.5 and p{1,2} = 3. Under Model I, selecting either user will lead to a maximum

utility of 2.5 but not both. In Case 1 of Model II, the platform is better off with A∗ = {1},

while it better selects both in Case 2 of Model II. Hence, selecting more users does not

necessarily leads to a higher utility, since it also means a higher cost for the platform.

Random Cost with Known Distributions

In crowdsensing, however, a user incurs an additional opportunity cost, i.e., the loss of po-

tential gain when the user decides to spend resources on sensing instead of other tasks. It

depends on the task and device status that varies over time. Hence, the perceived sensing

cost in each period consists of a deterministic energy cost and a random opportunity cost.

In this case, it makes sense to model user i’s sensing cost as a continuous random variable

Ci in [ci, c̄i], where c̄i ≥ ci > 0 and ci is the minimum energy cost. Random variables {Ci}

are independent of each other. Since device status is considered sensitive information, Ci
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is private and only user i knows its realization in each period, ci, by evaluating the task

and current device status2. We assume that the platform has only a priori probabilistic

knowledge of Ci. Let fCi(ci) and FCi(ci) be the probability density function (PDF) and

corresponding cumulative density function (CDF), respectively. The PDF and ci, c̄i could

be learned by the platform from the empirical distribution out of prior cost declarations by

users of the same device type, or from its long-term interaction with users (e.g., whether

or not accept an offer with a known price). If such prior information is absent, Ci may be

assumed to be uniformly distributed over [ci, c̄i]. Hence, it is reasonable to assume that the

platform can infer fCi(ci) or FCi(ci) based on the reported device type.

Since the platform does not know {ci}, it needs to consider possible offer rejections. For

A = {1} or {2}, the uncertainty in user decisions implies the following utility,

u{i} =

v{i} − p{i}, if user i accepts the offer

0, otherwise

, (4.2)

which is a Bernoulli random variable and the acceptance probability is Pr(ci ≤ p{i}) =∫ p{i}
ci

fCi(ci)dci = FCi(p{i}). In this case, it makes more sense to consider the EU,

EU{i} = E[u{i}] = (v{i} − p{i})FCi(p{i}), (4.3)

and the platform wants to find p∗{i} that maximizes EU{i}, that is, EU maximization. For

A = {1, 2}, the EU is given by

EU{1,2} =(v{1,2} − p{1} − p{2})FC1(p{1})FC2(p{2}) (4.4)

+ (v{1} − p{1})FC1(p{1})(1− FC2(p{2}))

+ (v{2} − p{2})(1− FC1(p{1}))FC2(p{2}).

2In practice, we would expect a crowd-sensing application to be installed and running on users’ mobile
devices, which has some function that estimates the perceived sensing cost in each period based on the
needed resources for the sensing task and the current device status. Designing such a function for sensing
cost estimation will be of practical importance, not only to this work, but also to many other crowd-sensing
applications (e.g., [81]). But this topic is out of the scope of this paper, and will be left as future work.
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and the goal is to find p∗ = [p∗{1}, p
∗
{2}] that maximizes EU{1,2}. Note that in general the

platform does not have to send out offers all at once and stop; it can send more backup based

on the knowledge of outcomes of previous offers.

Suppose that C1 ∼ U [1, 2] and C2 ∼ U [0.5, 1.5], where U [·, ·] denotes the uniform dis-

tribution. For pricing, the platform’s first thought could be setting p{i} = c̄i. Then the

following reasoning is the same with the deterministic-cost case. A natural generalization

is to choose a desired probability of acceptance3 γ ∈ [0, 1] and set p{i} = F−1
Ci

(γ) for each

user i, where F−1
Ci

(·) is the inverse CDF. Given γ, prices are fixed and the platform wants to

maximize the EU.

Taking Case 2 of Model II and γ = 0.95 as an example, we have p{1} = 1.95, p{2} = 1.45,

p{1,2} = 3.4, and A∗ = {2} is the best with EU{2} = (2.23− 1.45) · 0.95 = 0.74 by Eq. (4.3)

and (4.4). Note that the platform may further consider user 1, if user 2 rejects the offer.

Then the overall EU with multi-batch offering would be EU{2} + (1− γ)EU{1} > EU{2}.

Given A, γ can also be optimized in each batch. Taking Case 2 of Model II as an

example, when A = {1}, EU{1} = (2.18− (1 + γ))γ and γ∗ = 0.59, EU∗{1} = 0.35. Similarly,

for A = {2}, EU{2} = (2.23− (0.5 + γ))γ and γ∗ = 0.865, EU∗{2} = 0.75. When A = {1, 2},

we have EU{1,2} = −2.59γ2 + 2.91γ and γ∗ = 0.56, EU∗{1,2} = 0.82. In this case, instead of

using the same γ, the platform can also choose {γi} for each user separately, and maximizing

Eq. (4.4) leads to γ∗1 = 0.37, γ∗2 = 0.76 and the resulting EU∗{1,2} = 0.87.

As we can see, the notation of utility accounts for locations, data quality and sensing

costs, and the notation of EU further considers possible offer rejections. We can also see that

user selection and price determination are closely coupled in a pricing mechanism. More will

be discussed in Section 4.4.

3Compared to choosing the same desired price for all users, it makes more sense to choose the same
desired probability for all users, since users have different cost distributions in general. If all user devices
are of the same type, then these two approaches are the same.
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4.3 Preliminaries and Our Model

In this section, we provide background on submodularity. We then present our spatial

statistical model and define the metric for measuring radio mapping performance. Finally,

we present our valuation model and explore its properties.

4.3.1 Preliminaries

The submodularity property is formally defined as follows.

Definition 4.1 (Submodularity). Let Ω be a finite set. A function f : 2Ω 7→ R is submodular

if for any A,B ⊆ Ω,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (4.5)

Equivalently [91], a function f is submodular if, for any A ⊆ B ⊆ Ω and any i ∈ Ω \B,

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B). (4.6)

The notion of submodularity captures diminishing returns behaviors: adding a new element

increases f more, if there are fewer elements so far, and less, if there are more elements.

Definition 4.2 ((Approximately) monotonic function). Let Ω be a finite set. A function

f : 2Ω 7→ R is said to be monotone (or monotonic), if f(A∪ {i})− f(A) ≥ 0 for any A ⊆ Ω

and any i ∈ Ω \ A; f is said to be α-approximately monotonic, if f(A ∪ {i}) − f(A) ≥ −α

for some small α > 0, and for any A ⊆ Ω and any i ∈ Ω \ A.

One of the most basic submodular maximization problems is USM, which is formally

defined as follows.

Definition 4.3 (USM). Given a nonnegative submodular fucntion f : 2S 7→ R+, maxA⊆S f(A)

is called Unconstrained Submodular Maximization.

It is well known that USM is NP-hard [91,92] and thus heuristic-based algorithms are of-

ten used to find approximate solutions. One state-of-art linear-time deterministic algorithm
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Algorithm 3 USM

Input: S – ground set, f – nonnegative submodular function

Output: An (or Bn) – selected subset

1: A0 ← ∅, B0 ← S

2: for i = 1 to n do

3: ai ← f(Ai−1 ∪ {ui})− f(Ai−1)

4: bi ← f(Bi−1 \ {ui})− f(Bi−1)

5: if ai ≥ bi then

6: Ai ← Ai ∪ {ui}, Bi ← Bi−1

7: else

8: Ai ← Ai−1, Bi ← Bi−1 \ {ui}

9: end if

10: end for

11: return An (or equivalently Bn)

is proposed in [78] and provided in Algorithm 3 for reference in the rest of this work. It is

essentially a greedy algorithm, and achieves a 1/3-approximation, i.e., the algorithm obtains

a solution A with the guarantee that f(A) ≥ 1
3
f(OPT ), where OPT is the optimal solution.

4.3.2 Spatial Statistical Model – Gaussian Process

In this study, we employ GP [68, 74] (a generalization of Kriging) for radio mapping. Let

the set of n interested users be S, and the finely discretized AoI be U , where |U | � |S| = n,

where | · | is the cardinality operator. Define V = S ∪ U and each index i ∈ V corresponds

to a location xi. Since the platform obtains noisy RSSI measurements at S and wants to

estimate noiseless front-end RSSIs at U , the RSSI Z(xi) or Zi is modeled as a Gaussian
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random variable in GP,

Z(xi) =

µ(xi) + δ(xi), for i ∈ U

µ(xi) + δ(xi) + εi, for i ∈ S
, (dBm) (4.7)

where µ(xi) is path-loss-impaired RSSI, δ(xi) ∼ N(0, σ2
xi

) is spatially correlated shadowing

and εi ∼ N(0, σ2
εi

) is hardware noise of user i’s device.

Define a kernel (or covariance) function K(·, ·) such that K(i, j) is the covariance between

δ(xi) and δ(xj). In GP, the RSSIs at V form a Gaussian random vector ZV = [Z(xi)]i∈V

with a joint distribution of

fZV (zV ) =
1

(2π)n/2|ΣV V |
e−

1
2

(zV −µV )TΣ−1
V V (zV −µV ), (4.8)

where zV = [z(xi)]i∈V is a realization of ZV , µV = [µ(xi)]i∈V is the mean vector and ΣV V is

the covariance matrix. For any pair of indices i, j ∈ V , their covariance σij is the (i, j)-th

entry of ΣV V , which is given by

σij =


K(i, j), if i 6= j

K(i, j) or σ2
xi
, if i = j ∈ U

K(i, j) + σ2
εi

or σ2
xi

+ σ2
εi
, if i = j ∈ S

(4.9)

Given a set of measurements ZA where A ⊆ S, Z(xi) is a conditional Gaussian random

variable with a mean µZ(xi)|ZA (or simply µi|A) and a variance of σ2
Z(xi)|ZA (or simply σ2

i|A),

µi|A = µ(xi) + ΣT
AiΣ

−1
AA(zA − µA), (4.10)

σ2
i|A = σii − ΣT

AiΣ
−1
AAΣAi. (4.11)

Note that the posterior variance in Eq. (4.11) only depends on ΣV V , not the actual measured

values zA.

Estimating K(·, ·) can be difficult in practice, and it is often assumed that K(·, ·) is sta-

tionary (i.e., a function of location displacement) and isotropic (i.e., a function of distance).

In other words, K(i, j) = Kθ(||xi − xj||), where θ is a set of parameters. That being said,
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our following discussions do not assume stationarity or isotropy, and thus can be applied

to general kernel functions. But we do assume both mean and kernel functions have been

estimated from previous measurements4 and available in the current period.

4.3.3 Mutual Information for Uncertainty Reduction

To measure radio mapping performance, we adopt the MI metric [68] as defined below,

MI(A) = I(ZA;ZV \A) = H(ZV \A)−H(ZV \A|ZA), (4.12)

which is the amount of uncertainty reduction about RSSIs at unmeasured locations given

measurements at A.

Note that the platform is interested in ZV \A, which includes RSSIs at S\A (i.e., locations

with confirmed user presence) and U (i.e., locations with possible user presence). As implic-

itly assumed in [68], Z(xi) includes noise for i ∈ S \ A in the definition of MI, which is not

a big issue, since noise is relatively small. Compared to the entropy criterion H(ZV \A|ZA),

MI tends to not select users along the boundaries and avoids the “waste” of information.

Denote by MI(i|A) the marginal MI of an additional user i ∈ S \ A given A, which is

MI(i|A) = MI({i} ∪ A)−MI(A)

= H(Zi|ZA)−H(Zi|ZV \(A∪{i})), (4.13)

where H(Zi|ZA) = 1
2

log(2πeσ2
i|A) is the conditional entropy, which can be easily computed

from Eq. (4.11). It was shown in [68] that MI(A) is both submodular and α-approximately

monotone5. For any given α > 0, a discretization level exists so that MI(A) is approximately

monotone.

4In [50], authors used a predictive (empirical) path loss model to estimate the mean process µ(x). This
procedure is called detrending. In the same paper as well as [73], authors estimated an empirical semivari-
gram γ(·) (isotropic and stationary) from real measurements and fitted it with parametric models. The
relationship between γ(·) and K(·, ·) is K(i, j) = c0 − γ(||xi − xj ||) for i 6= j, where c0 is some constant.

5Intuitively, MI(A) is monotone under the condition that |V | � |S| ≥ |A| and thus adding one more
user increases the MI. Otherwise, consider the example that S = {1, 2} and |V | = |S|, then MI(∅) =
MI({1, 2}) = 0 but MI({1}) > 0 and MI({2}) > 0, which means that MI first increases then decreases as
more users are selected. Its monotonicity is approximate due to the extreme case where there exist two (or
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4.3.4 Valuation Function

We consider the following valuation function v : 2S 7→ R+ for the platform,

v(A) = κ · log(1 +MI ′(A)), (4.14)

where κ > 0 is a constant and MI ′(A) = MI(A) + α|A|. Intuitively, κ is the currency

that reflects the platform’s preference over per unit MI (in log scale). Commonly used in

economics, log(·) further emphasizes the diminishing returns behavior. We introduce α|A|

to ignore the extreme case where some users are arbitrarily close to each other, which rarely

occurs and/or can be avoided in practice (see Footnote 5).

We show that there exists useful structural properties like submodularity and monotonic-

ity in v(A).

Lemma 4.1. The valuation function v(·) in Eq. (4.14) is monotone submodular.

Proof. Consider two sets A, B such that A ⊆ B ⊆ S and any i ∈ S \ B. Let f(A) =

1 +MI ′(A). We know that f(A) is submodular from the submodularity of MI(A), since

f(A ∪ {i})− f(A) = MI(A ∪ {i})−MI(A) + α

≥MI(B ∪ {i})−MI(B) + α

= f(B ∪ {i})− f(B). (4.15)

We also know that f(A) is monotone, since MI(A) is α-approximately monotone and thus

f(A ∪ {i})− f(A) = MI(A ∪ {i})−MI(A) + α ≥ 0. (4.16)

Let a = f(A), b = f(A∪{i}), c = f(B), and d = f(B∪{i}). From the submodularity and

monotonicity of f(·), we have b−a ≥ d−c ≥ 0 and d ≥ b. Let a′ = b−(d−c) ≥ a. Since log(·)

more) users arbitrarily close to each other. If one is selected, selecting the other one will decrease MI. More
discussions are available in [68]. In practice, the platform can avoid such extreme cases by considering
only one of them. Also, a pricing mechanism that maximizes the (expected) utility should not select both,
since the second user is not beneficial for radio mapping and not free-of-charge.
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is non-decreasing concave, we have log(b) − log(a) ≥ log(b) − log(a′) ≥ log(d) − log(c) ≥ 0.

Hence, v(A ∪ {i})− v(A) ≥ v(B ∪ {i})− v(B) ≥ 0, and v(·) is submodular monotone.

4.4 Pricing Mechanism

In this section, we formulate pricing mechanism design as EU maximization and propose two

schemes: (1) sequential offering and (2) batched offering.

4.4.1 EU Maximization

Given S, v(·) and {FCi(ci)}, the platform wants to determine a set of offers (A,p), where

A ⊆ S are selected users and p = [pi]i∈A is the corresponding price vector. Let the decision

of the i-the selected user be Xi, which is given by

Xi =

1, if ci ≤ pi (i.e., offer is accepted)

0, else (i.e., offer is rejected)

. (4.17)

It is a Bernoulli random variable (from the perspective of the platform), and Pr(Xi = 1) =∫ pi
ci
fCi(ci)dci = FCi(pi).

As mentioned in Section 4.2.1, an offer may be expired, and this event is modeled by a

random variable X ′i, i.e.,

X ′i =

1, if offer is unexpired

0, if offer is expired

, (4.18)

where ρi = Pr(X ′i = 1) is the probability of an unexpired offer. We assume that the platform

can estimate ρi and that X ′i is independent of Xi.

Let Yi be a random variable that represents whether a user is successfully recruited (i.e.,

offer is unexpired and accepted),

Yi =

1, if offer is unexpired AND accepted

0, if offer is expired OR rejected

, (4.19)
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where

γi = Pr(Yi = 1) = Pr(X ′i = 1, Xi = 1)

= Pr(X ′i = 1) · Pr(Xi = 1|X ′i = 1)

= ρi · FCi(pi) ∈ [0, ρi], (4.20)

is the probability that the i-th selected user is recruited.

Define Y = [Yi]i∈A and let y be the realization of Y. Then Ay ⊆ A is the set of recruited

users. Then the EU is given by

EU(A,p) = EY[u(Ay,p)] =
∑
y

Pr(Ay,p)u(Ay,p), (4.21)

where

Pr(Ay,p) =
∏
i∈Ay

γi ·
∏
i/∈Ay

(1− γi), (4.22)

u(Ay,p) = v(Ay)−
∑
i∈Ay

pi, (4.23)

are the probability and utility of Ay given p, respectively.

The platform’s goal is to design a pricing mechanism based on EU maximization, i.e.,

max
A⊆S,p

EU(A,p). (4.24)

Hence, we can see from Eq. (4.24) that a pricing mechanism consists of a selection rule and

a pricing rule, which is joint optimization in the discrete and continuous domains.

4.4.2 Sequential Offering

We first consider a special case of EU maximization, where |A| = 1. That is, the platform

only selects one best user with its best offer in each round, and waits for its decision before

making the next offer. We call it sequential (individual) offering. Formally, the task in each

round is

max
i∈S\A,pi

EU(A ∪ {i}, [p, pi]|Y = y), (4.25)
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Algorithm 4 Sequential Offering

Input: S – set of users, v(·) – valuation function, {FCi(·)} – cost distributions, {ρi} –

probabilities of unexpired offers, τ – threshold

Output: A – selected users, p – prices, y – outcomes

1: A← ∅, p← NULL, y← NULL

2: while A 6= S do

3: for each user i in S \ A do

4: p∗i ← arg maxpi∈[ci,c̄i]
[v(i|Ay)− pi] · FCi(pi)

5: EUi ← [v(i|Ay)− p∗i ] · ρi · FCi(p∗i )

6: end for

7: i∗ ← arg maxi∈S\AEUi

8: while EUi∗ > τ do

9: Send the offer (i∗, p∗i∗) and observe yi∗ A← A ∪ {i∗}, p← [p, p∗i∗ ], y← [y, yi∗ ]

10: if yi∗ = 1 then

11: break

12: else

13: i∗ ← arg maxi∈S\AEUi

14: end if

15: end while

16: end while

17: return A, p, y
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where y represents the outcomes of offers that have been sent and is known to the platform.

The algorithm for sequential offering is described in Algorithm 4. The idea is as follows:

The platform first determines an optimum price p∗i tailored to each i that maximizes EUi.

Then it picks the index i∗ that maximizes among the EUi, and offers to that user the

corresponding p∗i∗ .

Price Determination (Lines 3-6)

Depending on whether user i ∈ S \ A is successfully recruited, the utility is

u(Ay ∪ {i}Yi , [p, pi]) = u(Ay,p) +

v(i|Ay)− pi, if Yi = 1

0, otherwise,

(4.26)

where v(i|Ay) = v({i} ∪Ay)− v(Ay) is the marginal value of i given Ay. The task is to find

p∗i = arg max
pi∈[ci,c̄i]

EYi [u(Ay ∪ {i}Yi , [p, pi])]

= arg max
pi∈[ci,c̄i]

[v(i|Ay)− pi] · Pr(Yi = 1)

= arg max
pi∈[ci,c̄i]

[v(i|Ay)− pi] · FCi(pi). (4.27)

Note that ρi in Pr(Yi = 1) in Eq. (4.20) is a constant and does not impact the choice of p∗i . If

fCi(ci) = F ′Ci(ci) is differentiable and non-increasing, the objective function in Eq. (4.27) will

be concave in pi, and p∗i can be obtained with efficient algorithms (e.g., gradient descent). If

FCi(ci) is twice continuously differentiable, techniques like interval analysis may be used to

find p∗ [93].

User Selection (Line 7)

The best user i∗ that maximizes the EU is found,

i∗ = arg max
i∈S\A

[v(i|Ay)− p∗i ] · ρi · FCi(p∗i ). (4.28)

Note that the above selection also takes ρi into account. If the user is recruited (Lines 10),

the algorithm will go to Line 3 to recompute best prices for remaining users; otherwise, it
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sends out the next best offer immediately until one is accepted (Lines 8-15). To enable fast

convergence, the platform can set a minimum threshold τ > 0 (e.g., 0.01) for the marginal

EU (Line 8). The platform stops making offers when there are (1) no remaining users or (2)

none of the remaining users leads to a non-trivial marginal EU.

Complexity Analysis

If we assume O(1) for computing the best price for a single user, the overall computational

complexity of Algorithm 4 is O(n2), since it takes O(n) to compute best prices for all

remaining users and may select up to n users in the worst case. The inner while-loop does

not require re-computation of best prices and is dominated by the for-loop. Note that O(n2)

is very conservative, since the algorithm may stop much earlier based on the configuration.

4.4.3 Batched Offering

As we can see, sequential offering is intuitive and straightforward, but its main drawback

is the (possibly) large delay accumulated over multiple rounds of offering. Hence, a natural

generalization is to make multiple offers (i.e., a batch) in each round and continue offering

for multiple rounds. We refer to it as (sequential) batched offering.

In batched offering, the platform is faced with the general case of EU maximization in

Eq. (4.24) in each round. Unfortunately, joint optimization can be difficult in practice,

mainly because EU(A,p) is a multi-variate function in the continuous domain of p given

A, and there may not exist structural properties like concavity in general to enable efficient

computation of the global optimum. Exhaustive search is prohibitive as the space of p is

huge. Fortunately, EU(A,p) has a useful structural property (i.e., submodularity) in the

discrete domain of A as a set function, which inspires our following pricing mechanism design.

Lemma 4.2. Given p, EU(A,p) is submodular in A.

Proof. We notice that u(Ay,p) is submodular in Ay given p, since v(·) is submodular



79

(Lemma 4.1) and

u(Ay ∪ {i},p)− u(Ay,p) = v(i|Ay)− pi ≥ v(i|B)− pi

≥ u(B ∪ {i},p)− u(B,p) (4.29)

for Ay ⊆ B ⊆ S and any i ∈ S \B. Since the class of submodular functions are closed under

taking expectations, it follows that EU(A,p) is submodular in A given p.

The basic idea of our pricing mechanism is to first fix the pricing rule and then focus on

user selection to exploit the submodularity property. As mentioned in Section 4.3.1, if a set

function f is nonnegative submodular and the problem is maxA⊆S f(A), there exist heuristic-

based algorithms (e.g., Algorithm 3) that provide solutions with performance guarantee at

low complexity. Next, we will present our pricing mechanisms for single-batch and multi-

batch offering.

Single-Batch Offering

As mentioned in Section 4.2, we consider the following pricing rule in this work: the platform

chooses a desired probability of recruitment γ ∈ (0, 1] such that γi = min(γ, ρi) for any i ∈ S

and determines corresponding prices, i.e.,

pγ(A) =
∑
i∈A

pγ({i}) =
∑
i∈A

F−1
Ci

(min(γ/ρi, 1)) . (4.30)

Given pγ(·), user selection then becomes

max
A⊆S

EUγ(A) = max
A⊆S

∑
y

Prγ(Ay)uγ(Ay), (4.31)

where Prγ(Ay) =
∏

i∈Ay
γi ·
∏

i/∈Ay
(1 − γi) and uγ(Ay) = v(Ay) − pγ(Ay). By Lemma 4.2,

EUγ(A) is submodular.

However, the USM formulation also requires the objective function to be nonnegative,

but EUγ(A) can be negative. To bypass this issue, one straightforward way is to define

EU ′γ(A) = EUγ(A) + p0 (4.32)
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where

p0 =
∑
i∈S

γipγ({i}) (4.33)

is a constant that represents the maximum expected price, and adding a constant preserves

submodularity. It is easy to see that EU ′γ(A) is both submodular and nonnegative, and

maxA⊆S EU
′
γ(A) is equivalent to maxA⊆S EU

′
γ(A).

Another issue is due to the difficulty of analytically evaluating EUγ(A) (or EU ′γ(A)), since

it involves an exponentially growing number of terms due to the summation in Eq. (4.31).

In practice, the Monte-Carlo (MC) method [94] can be used to obtain estimates of ˆEUγ(A)

as well as ˆEU ′γ(A) (by adding the constant p0 to ˆEUγ(A)). We show that USM(S, ˆEU ′γ) has

the following performance.

Theorem 4.1. If | ˆEU ′γ(A) − EU ′γ(A)| ≤ ε for some small ε > 0 for any A ⊆ S, USM(S,

ˆEU ′γ) (or equivalently USM(S, ˆEUγ)) returns a solution A with the following performance,

EU ′γ(A) ≥ 1

3
EU ′γ(OPT )− 1

3
(2n+ 2)ε, and (4.34)

EUγ(A) ≥ 1

3
EUγ(OPT )− 2

3
p0 −

1

3
(2n+ 2)ε, (4.35)

where OPT is the optimal solution for maxA⊆S EU
′
γ(A) as well as maxA⊆S EUγ(A), p0 =∑

i∈S γipγ({i}) and n = |S|.

Proof. Before proving Theorem 4.1, we first prove the following lemma.

Lemma 4.3. Given a nonnegative submodular function f : 2S 7→ R+ and its estimate f̂ with

|f̂(A)− f(A)| ≤ ε for any A ⊆ S and some small ε > 0, USM(S, f̂) returns a solution A with

the following performance guarantee,

f(A) ≥ 1

3
f(OPT )− 1

3
(2n+ 2)ε (4.36)

where OPT = arg maxA⊆S f(A) and n = |S|.

Proof. Our proof of Lemma 4.3 is inspired by the proof in [78]. Let us start with Lemma 4.4.
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Lemma 4.4. For every 1 ≤ i ≤ n, ai + bi ≥ −4ε, where ai = f̂(Ai−1 ∪ {ui})− f̂(Ai−1) and

bi = f̂(Bi−1 \ {ui})− f̂(Bi−1).

Proof. Since |f̂(A)− f(A)| ≤ ε, ∀A ⊆ S, we have

f(A)− ε ≤ f̂(A) ≤ f(A) + ε, ∀A ⊆ S. (4.37)

Notice that (Ai−1 ∪ {ui}) ∪ (Bi−1 \ {ui}) = Bi−1, (Ai−1 ∪ {ui}) ∩ (Bi−1 − ui) = Ai−1. Based

on both observations and submodularity of f , we get

ai + bi = [f̂(Ai−1 ∪ {ui})− f̂(Ai−1)] + [f̂(Bi−1 \ {ui})− f̂(Bi−1)]

≥ [f(Ai−1 ∪ {ui}) + f(Bi−1 \ {ui})]− [f(Ai−1) + f(Bi−1)]− 4ε ≥ −4ε.

Hence, Lemma 4.4 is true.

Define OPTi , (OPT ∪Ai)∩ (Bi). Therefore, OPT0 = OPT and the algorithm outputs

OPTn = An = Bn. Examine the sequence f(OPT0), ..., f(OPTn), which starts with f(OPT )

and ends with the f value of the output of the algorithm. The idea is to bound the total

loss of value along this sequence.

Lemma 4.5. For every 1 ≤ i ≤ n, we have

f(OPTi−1)− f(OPTi) ≤ [f̂(Ai)− f̂(Ai−1)] + [f̂(Bi)− f̂(Bi−1)] + 2ε.

Proof. W.L.O.G., we assume that ai ≥ bi, i.e., Ai ← Ai−1 ∪ {ui}, Bi ← Bi−1 (the other case

is analogous). Notice that in this case OPTi = (OPT ∪Ai)∩Bi = OPTi−1∪{ui}, Bi = Bi−1

and f̂(Bi) = f̂(Bi−1). Hence, the inequality we need to prove is that

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ [f̂(Ai)− f̂(Ai−1)] + 2ε = ai + 2ε.

We now consider two cases. If ui ∈ OPT , then the left-hand of the inequality is 0, and all

we need to show is that ai ≥ −2ε. This is true since ai + bi ≥ −4ε by Lemma 4.4, and we
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assumed ai ≥ bi. If ui /∈ OPT , then also ui /∈ OPTi−1, and thus

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ f(Bi−1 \ {ui})− f(Bi−1)

≤ f̂(Bi−1 \ {ui})− f̂(Bi−1) + 2ε

= bi + 2ε ≤ ai + 2ε.

The first inequality follows by submodularity: OPTi−1 = ((OPT ∪ Ai−1) ∩ Bi−1) ⊆ (Bi−1 \

{ui}) (recall that ui ∈ Bi−1 and ui /∈ OPTi−1). The second and third inequalities follow from

Eq. (4.37) and our assumption that ai ≥ bi, respectively.

Summing up Lemma 4.5 for every 1 ≤ i ≤ n, we have

n∑
i=1

[f(OPTi−1)− f(OPTi)] ≤
n∑
i=1

[f̂(Ai)− f̂(Ai−1)] +
n∑
i=1

[f̂(Bi)− f̂(Bi−1)] + 2nε.

The above sum is telescopic and we have

f(OPT0)− f(OPTn) ≤ [f̂(An)− f̂(A0)] + [f̂(Bn)− f̂(B0)] + 2nε

≤ f̂(An) + f̂(Bn) + 2nε ≤ f(An) + f(Bn) + (2n+ 2)ε (4.38)

By our definition, OPT0 = OPT and OPTn = An = Bn. Then we obtain that f(OPT ) ≤

3f(An) + (2n+ 2)ε and f(An) = f(Bn) ≥ 1
3
f(OPT )− 1

3
(2n+ 2)ε. This completes the proof

of Lemma 4.3.

Now let us prove Theorem 4.1. By Lemma 4.3, we have EU ′γ(A) ≥ 1
3
EU ′γ(OPT )− 1

3
(2n+

2)ε, whereOPT = arg maxA⊆S EU
′
γ(A), which is also the optimal solution to maxA⊆S EUγ(A).

By definition of EU ′γ(A), we obtain

EUγ(A) + p0 ≥
1

3
[EUγ(OPT ) + p0]− 1

3
(2n+ 2)ε,

and thus we have

EUγ(A) ≥ 1

3
EUγ(OPT )− 2

3
p0 −

1

3
(2n+ 2)ε.

This completes the proof of Theorem 4.1.
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Algorithm 5 Single Batch Offering

Input: S – set of users, f – ˆEU ′γ(·) (or equivalently ÊUγ(·), Γ = [γ1, ..., γl] – candidate γ

values where γ1 < γ2 < ... < γl, pγ(·) – pricing rule

Output: A – selected users, p – prices, γ∗ – best probability of recruitment

1: A← ∅, p← NULL, γ∗ ← 0

2: for γ in [γ1, ..., γl] do

3: Aγ ← USM(S, f)

4: if Aγ = ∅ then

5: break

6: end if

7: if ÊUγ(Aγ) > ÊUγ(A) then

8: A← Aγ, γ
∗ ← γ

9: end if

10: end for

11: for each user i in A do

12: p← [p, pγ∗({i})]

13: end for

14: return A, p, γ∗
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Algorithm 5 describes the algorithm for single-batch offering. Since each γ leads to a

different solution Aγ, it is better for the platform to search through a list of l candidate γ

values (e.g. {0.1, 0.2, ..., 1.0}) to find the best one that maximizes ÊUγ(Aγ). As USM takes

O(n) time, the overall complexity of Algorithm 5 is O(ln).

Multi-Batch Offering

In the case of expired or rejected offers in the previous batch, the platform may send out

more batches until the next batch is no longer profitable.

Denote by EUγ(B|Ay) the marginal EU of additional offers B conditioned on the set of

recruited users Ay,

EUγ(B|Ay) = EY′ [uγ(By′|Ay)], (4.39)

where uγ(By′|Ay) = uγ(By′ ∪Ay)− uγ(Ay) = v(By′|Ay)− pγ(By′) is the marginal utility of

By′ given Ay. We can see from Lemma 4.2 that EUγ(B|Ay) is again submodular in B.

The algorithm for multi-batch offering is provided in Algorithm 6. Starting from the

second batch, the marginal EU function is passed as an input to Single Batch Offering

(Line 3). If the (estimated) marginal EU of B is higher than a preset threshold τ > 0 (e.g.,

0.01), then it is profitable on average to send out the next batch of offers (Lines 5). The

platform will then wait for the results and update A, p, y accordingly (Line 6). The offering

process stops when (1) there are no more users to consider (Line 2), or (2) the next batch is

no longer profitable on average (Line 4).

4.5 Evaluation

In this section, we conduct extensive simulations to evaluate proposed pricing mechanisms

based on EU maximization and compare them against baseline mechanisms based on (best-

case) utility maximization. We also study the impact of offer expiration on the proposed

pricing mechanisms.
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Algorithm 6 Multi Batch Offering

Input: S – set of users, f – ˆEU ′γ(·) (or equivalently ÊUγ(·)), Γ = [γ1, ..., γl] – candidate γ

values where γ1 < γ2 < ... < γl, pγ(·) – pricing rule, τ – threshold

Output: A – selected users, p – prices, y – outcomes

1: A← ∅, p← NULL, y← NULL

2: while A 6= S do

3: (B,pB, γ
∗) ←Single Batch Offering(S \ A, f(·|Ay),Γ, pγ(·))

4: if ÊUγ∗(B|Ay) > τ then

5: Send out offers (B,pB) and observe yB

6: A← A ∪B, p← [p,pB], y← [y,yB]

7: else

8: break

9: end if

10: end while

11: return A, p, y
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4.5.1 Simulation Setup

Figure 4.3(a) is a sample topology of 60 users, whose locations are randomly generated from

the spatial Poisson process. The AoI is a 6km-by-6km region, which is discretized into a total

of 169 points with a resolution of 450 meters. We assume an exponential kernel function

K(d) = 15.5 · exp(− d
0.7

), as shown in Figure 4.3(b), which is adapted from the semivariogram

fitted from real measurements [73]. Given the above settings, negative marginal MI values

are not observed and α is set to 0.

The domain of Ci is [ci, ci + ∆c], where ∆c > 0 and ci is randomly generated from

U [0.1, 0.2], where U [·, ·] denotes the uniform distribution. We consider two types of distribu-

tions: uniform (UN) and truncated normal (TN) distributions. TN is the normal distribution

N(ci, (∆c/3)2) truncated to [ci, ci+∆c]. Compared to UN, TN represents the situation where

the majority of users have sensing costs closer to the energy costs ci, despite of opportunity

costs. The same set of noise variances independently drawn from U [0.5, 1] is used throughout

our simulation.

Baseline Mechanisms

As mentioned in Section 4.2, an alternative to design a pricing mechanism is to maximize

the best-case utility as in Eq. (4.1), assuming no expired or rejected offers. In this sim-

ulation, we consider single-batch and multi-batch offering based on utility maximization

as baseline mechanisms. That is, instead of passing ˆEU ′γ(·) into USM in each batch (Line

3 of Algorithm 5), we pass u′γ(·) (a nonnegative submodular function) into USM, where

u′γ(A) = uγ(A) + pγ(S) and uγ(A) = v(A) − pγ(A). Compared to EU ′γ(·), the objective

function u′γ(·) does not require the MC method and is easy to evaluate.

For convenience, we refer to EU-maximization-based mechanisms by feeding ˆEU ′γ(·) to

USM as USM-EU, and baseline mechanisms by feeding u′γ(·) to USM as USM-u.
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Figure 4.3: (a) Sample topology of 60 users (in red) in a 6km-by-6km area that is discretized

into a mesh grid of 169 points (in blue). (b) The kernel function K(d) = 15.5 · exp(− d
0.7

).

4.5.2 USM-EU vs. USM-u in Single-Batch Offering

In this experiment, we compare the performance of USM-EU and USM-u in singe-batch

offering. ˆEU ′γ(·) is obtained by averaging over 50 iterations of MC simulations. We randomly

select 30 or 60 users, and set κ in v(·) (Eq. (4.14)) to 4 or 8, and ∆c to 0.1 or 0.5. We assume

no expired offers and set ρi = 1 for each user i. We will study the impact of offer expiration

later in Section 4.5.3. A total of 30 iterations are conducted, and a different seed is used for

generating users and cost distributions in each iteration. In the i-th iteration, however, the

same set of users and cost distributions are used across different γ and mechanisms for fair

comparison. Results are provided in Figure 4.4.

In Figure 4.4(a), we first observe that γ∗ achieving the maximum averaged EU is less

than 1 for both USM-EU and USM-u under both UN and TN distributions. Intuitively, with

a smaller γ, the platform can save money per user and send out more offers. Although each
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ÊU γ(Au)-TN
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Figure 4.4: Average EU achieved by USM-u and USM-EU for UN and TN cost distributions

under different settings.



89

offer is less likely to be accepted, the platform achieves a greater EU on average. Second, at

γ = γ∗, USM-EU achieves a higher EU than USM-u, especially for UN. Besides, the fact that

more money is saved per user under TN than UN with the same γ explains the observation

that both USM-EU and USM-u achieve a larger EU under TN than UN.

Similar behaviors are observed in Figures 4.4(b) and 4.4(d). But in Figure 4.4(c) when

∆c is changed from 0.5 to 0.1, the uncertainty in opportunity costs is reduced and energy

costs become more dominant. In this case, the platform will not save much per user with a

small γ and should choose a larger γ. Besides, we do not observe the advantage of USM-EU.

Furthermore, as shown in Figure 4.4(a), USM-EU is slightly better than USM-u with γ

between 0.3 and 0.6 under UN, but their performance is very close for γ ≤ 0.2 under UN

and for all γ values under TN. This is mainly because in those cases, both mechanisms will

send out offers to more or all users (30 max. in this setting) and thus achieve very close EU.

When there are more users (Figure 4.4(b)), USM-EU is better than USM-u under both UN

and TN for γ < 0.6. With smaller ∆c (Figure 4.4(c)), USM-EU is less advantageous. With

smaller κ (Figure 4.4(d)), each user is less valuable and USM-u selects fewer users, since

it assumes no expired or rejected offers. In contrast, USM-EU considers the average-case

utility and is more aggressive in user selection, which explains its better performance than

USM-u with the same small γ.

4.5.3 Batched Offering vs. Sequential Offering

In this simulation, we compare the following mechanisms:

• SB-u/EU: single-batch offering with USM-u or USM-EU;

• MB-u/EU: multi-batch offering with USM-u or USM-EU;

• SE: sequential offering.

We randomly select n out of 60 users, and generate a set of noise variances and cost

distributions, which are used in all iterations for each n. In the i-th iteration, a different
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set of sensing costs is independently generated from the cost distributions and used across

different mechanisms for fair comparison. We set ∆c = 0.5, and varied n, κ or {ρi} to study

their impacts on the average utility achieved by the platform. All results are averaged over

50 iterations. Due to space limit, only results for UN distributions are reported, but similar

observations exist for TN distributions.

Impact of n (number of users)

We first set κ = 4 and ρi = 1 for each user i (i.e., no expired offers). n is varied from

10 to 60, and results are provided in Figure 4.5(a). First, we observe that all mechanisms

achieve a higher utility on average as n increases. Second, if only one batch/round is allowed,

USM-EU achieves the highest utility, since it accounts for possible expiration and rejection

and thus makes more offers in the first batch. The improvement of USM-EU (i.e., SB-EU)

over USM-u (i.e., SB-u) varies from 8.5% with n = 10 to 40.5% with n = 60 (Figure 4.5(a)),

which means the advantage of SB-EU (over SB-u) is more obvious with more users. SE

performs the worst, since it only sends out one offer in the first round.

When more batches are allowed (Figure 4.5(b)), all mechanisms perform better, since it

is always beneficial to send out more batches to make up for expired or rejected offers in the

previous batch. Since USM-EU is very generous in making offers in the first batch, following

batches become less profitable. If the maximum number of batches is unlimited, USM-u

(i.e., MB-u) eventually achieves very close performance with USM-EU (i.e., MB-EU), but

the price is a much larger cumulative delay. For instance, when n = 60, MB-EU and MB-u

make 2.5 and 7.7 batches of offers on average. The number is 24.9 for SE, which is the worst.

Impact of κ (currency in Eq. (4.14))

We then fix n = 30 and vary κ from 1 to 6. We set ρi = 1 for each user i. As shown

in Figure 4.5(c), the average utility obtained by each mechanism increases as κ increases,

because the platform values per unit MI (log-scaled) more and is able to recruit more users.

Besides, SB-EU is still better than SB-u for different κ, but its advantage is less obvious
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when κ gets larger. For instance, the improvement is 127.1% with κ = 1, but reduces to

13.4% with κ = 6. Moreover, multi-batch offering is better than single-batch offering for

both USM-EU and USM-u, but the improvement is more significant for USM-u.

Impact of ρ (probability of unexpired offers)

We set n = 30 and κ = 4. For simplicity, we assume ρi = ρ for each user i and vary ρ from

0.2 to 1. Results are provided in Figure 4.5(d). First, we observe that all mechanisms are

adversely affected when ρ decreases. Even though the platform knows ρ and adjusts the price

as in Eq. (4.30) to achieve γ, i.e., increasing the acceptance probability to offset the high

expiration probability, it implies higher prices for users and consequently reduced utility. As

mentioned earlier in Section 4.4.2, the best price for each user in SE does not depend on ρ,

but the resulting marginal EU does. Nevertheless, SE observes the outcome of the previous

offer and continues offering, which explains why it (as well as multi-batch offering) is more

robust against offer expiration than single-batch offering.

4.6 Conclusion and Future Work

In this work, we proposed a crowdsensing system for spatial-statistics-based radio mapping

and developed pricing mechanisms, i.e., sequential and batched offering, based on EU maxi-

mization. We conducted extensive simulations to evaluate proposed mechanisms. Our results

show that if only one batch is allowed, the proposed mechanism based on EU maximization

is significantly better than the utility-maximization-based baseline mechanism. If multiple

batches are permitted (and the number of batches is unlimited), the proposed mechanism

achieves close performance with the baseline mechanism, but requires much fewer batches

and thus a much smaller delay. Sequential offering works better than the single-batch base-

line mechanism, but has a much larger cumulative delay. Offer expiration adversely affected

all mechanisms, but sequential and batched offering are relatively more robust.

There are several future directions that could be explored. First, it would be very inter-

esting to apply spatio-temporal statistics to also model temporal correlations and capture
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temporal variations in radio environments. Second, it would be of practical importance to

investigate the problem in an online setting, where users arrive in random order and one-time

price offer has to be made upon each user’s arrival. Such an online pricing mechanism would

better handle high user mobility and minimize actual displacements between reported and

sensing locations. Last but not the least, we would like to enhance security and protect user

privacy of our system.
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Figure 4.5: Comparison of SB-u, MB-u, SB-EU, MB-EU and SE. (a) Impact of n (κ = 4, no

expired offers). (b) Utility vs. number of batches of offers (n = 60, κ = 4, no expired offers).

(c) Impact of κ (n = 30, no expired offers). (d) Impact of ρ (n = 30, κ = 4, ρi = ρ for each

user i).
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Chapter 5

SAS-ASSISTED COEXISTENCE-AWARE DYNAMIC
CHANNEL ASSIGNMENT

In this previous chapter, we studied the problem of designing a pricing-based incentive

mechanism for crowdsensed radio mapping. We showed that the proposed pricing mechanism

based on expected utility maximization outperforms the baseline utility-maximization-based

baseline mechanism.

Up to this point, we have discussed the application of spatial statistics (Kriging) to radio

mapping (Chapter 2) and the design of incentive mechanisms including auctions (Chapter 3)

and pricing (Chapter 4) for crowdsensed radio mapping, in complementary to the traditional

radio prorogation models for identifying white space opportunities in shared spectrum. After

estimating coverage/protection regions and identifying WS (available channels), it is crucial

to assign the channels to SUs so as to optimize the network performance. In this chapter, we

study dynamic channel assignment through a centralized entity in the 3.5 GHz CBRS band.

Following unlicensed use of TV spectrum [19], the FCC targeted the release of 3550-

3700 MHz CRBS band for small cell deployment [25, 95–97], which is currently used by

high-power Department of Defense shipborne radars and non-federal FSS earth stations.

The CBRS adopts a three-tiered spectrum access framework that consists of three service

tiers: IA, PA, and GAA (Figure 5.1). PA and GAA devices are also referred to as Citizens

Broadband Radio Service Devices (CBSDs), which are fixed stations or networks of such

stations operating on a PA or GAA basis. End user devices are not considered as CBSDs.

The above framework highlights the hierarchical spectrum access rights: Incumbents, in-

cluding authorized federal and FSS users, would be protected from harmful interference from

all other users, by forbidding CBSD transmissions within and close to the activated Dynamic
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Priority	Access	(PA)

Incumbent	
Access (IA)

Generalized	Authorized	
Access	(GAA)

Must	be	protected	at	
given	location	and	time

License	holders	through	
auctions	(protected	from	
other	PA	and	GAA	users)

3G/4G	Service	Providers

Unlicensed	users	
(No	guaranteed	

interference	protection)
Wi-Fi	Access	Points	or	similar	devices

CBSD

Figure 5.1: Three-tiered spectrum access framework in the 3.5 GHz CBRS band. Incumbents

have the highest priority and must be protected at any given location and time. PA users

obtain licenses via competitive bidding and are protected from other PA and GAA users.

GAA users shall not expect any interference protection and are expected to coexist.

Protection Areas (DPAs). PA users such as hospitals and public safety entities with critical

quality-of-service needs would be authorized to operate at specific locations with interference

protection. But they need to purchase PA licenses (PALs) via competitive bidding, each of

which guarantees the authorized and protected use of a 10 MHz channel in a census tract.

In contrast, GAA CBSDs (or GAA nodes) would be authorized to opportunistically access

the band within designated geographic areas, but they should expect no interference protec-

tion and avoid causing interference to incumbents and PA users. In the center of the CBRS

ecosystem lies a centralized entity called SAS (Spectrum Access System) that authorizes and

manages use of spectrum for the CBRS. In this work, we study the SAS-assisted dynamic

channel assignment (CA) for PA and GAA tiers.

In order to provide a flexible, scalable, practically deployable bandwidth for high data

rate technologies, the 3.5 GHz band is divided into 15 orthogonal 10-MHz channels. Up to

seven channels can be reserved for PALs in a license area (i.e., a census tract), and a licensee



96

is allowed to aggregate up to four channels by stacking multiple channels in a service area

that consists of one or multiple contiguous license areas. Although each PAL guarantees

one assigned channel, the exact channel assignment is not fixed and would be determined

by the SAS. Since the FCC requires the SAS to assign contiguous channels to geographically

contiguous PALs, it imposes a major challenge to the design of a PA CA scheme.

To improve spectrum utilization, a PAL channel is made available for GAA use at lo-

cations outside the PAL protection areas (PPAs) and their vicinities, under the “use-it-or-

share-it” rule. As a result, channel availability becomes location dependent and may vary

significantly among GAA nodes. Moreover, a GAA node may also request multiple contigu-

ous channels to meet its capacity demand or support network operations. For instance, a

Wi-Fi-based node would require at least two contiguous channels in the CBRS.

In this work, we are interested in co-channel coexistence enabled by Wi-Fi like MAC

protocols, such as CSMA/CA [98] or LBT in LTE-LAA [32]. Hence, the pairwise relationship

of GAA nodes can be classified into three cases: 1) no conflict, 2) type-I conflict – two

interfering nodes are hidden from each other and cannot detect possible interference at end

user devices (or clients) without their feedbacks (e.g., packet loss or throughput degradation),

or 3) type-II conflict – two interfering nodes are within each other’s carrier-sensing (CS) or

energy-detection (ED) range and can resolve the conflict through contention. Since GAA

nodes are able to harmoniously share the same channel under type-II conflicts, the SAS can

exploit such coexistence opportunities to accommodate more devices in a dense network.

Despite that dynamic CA has been studied in the context of spectrum sharing from

various perspectives such as graph coloring [99–102] and game theory [103–105], the afore-

mentioned challenges (i.e., channel and geographic contiguity, spatially varying channel avail-

ability, and coexistence awareness) differentiate the dynamic CA in the CBRS from previous

work. In this work, we make the following specific contributions:

• We define the node-channel pair (NC pair) that assigns a set of contiguous and available

channels to a node (i.e., a PA service area or a GAA CBSD) and introduce the NC-pair
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conflict graph, in which each vertex is a NC pair and each edge represents a conflict.

• With the proposed conflict graph, we formulate PA CA as max-cardinality CA. For

GAA CA with binary conflicts, we extend NC pairs to super-NC pairs to exploit type-

II conflicts, where each super-node consists of a set of GAA nodes that can detect

each other’s transmission. We define a reward function to capture the preferences of

(super-)NC pairs and formulate binary GAA CA as max-reward CA. To further enhance

coexistence awareness, we introduce a penalty function and extend binary conflicts to

non-binary. The non-binary GAA CA is then formulated as max-utility CA to trade

off rewards against penalties.

• We propose a super-node formation algorithm based on clique searching and bin pack-

ing to identify super-nodes. The max-cardinality CA and max-reward CA are mapped

to the problem of finding the maximum (weighted) independent set, and approximate

solutions are obtained through a heuristic-based algorithm. For max-utility CA, we

show that the utility function is submodular, and our problem is an instance of matroid-

constrained submodular maximization. We propose a polynomial-time algorithm based

on (approximate) local search that provides a provable performance guarantee.

• We conduct extensive simulations to evaluate the proposed algorithms, using a real-

world dataset that contains Wi-Fi hotspot locations in the New York City (NYC) [106].

For PA CA, our results show that the proposed algorithm consistently serves over 93.0%

of service areas and outperforms the baseline algorithm by over 30.0%. For binary

GAA CA, the proposed algorithm with linear rewards is able to accommodate 10.2%

more nodes and serve 10.4% more demand on average than the baseline algorithm.

Besides, enabling coexistence awareness can effectively improve the performance of the

proposed algorithms. For non-binary GAA CA, the proposed algorithm achieves 29.5%

more utility while keeping the total interference much smaller than the baseline.

The remainder of this chapter is organized as follows. Section 5.1 reviews related work on
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CA. Section 5.2 summarizes CA scenarios and presents the SAS-based architecture. Conflict

graphs and problem formulations are presented in Section 5.3, and proposed algorithms are

provided in Section 5.4. Section 5.5 presents simulation results and Section 5.6 concludes

this study.

5.1 Related Work

Dynamic CA has been studied in various contexts such as cellular networks [107], mesh

networks [108] and cognitive radio networks [109]. Among the proposed approaches, graphs

are widely adopted for CA modeling. In [102, 110–112], authors considered CA under the

channel availability and interference constraints using vertex-weighted interference/conflict

graphs, where each vertex represents a user with a color (channel) list, and each edge denotes

a binary conflict due to co-channel interference. The problem is then formulated as graph

multi-coloring (i.e., assign conflict-free colors to users and obtain rewards on vertices) and

a typical objective is to maximize the total reward or utility (derived from rewards). Such

conflict-free CA algorithms are suitable for sparse networks.

In order to capture the interference with greater granularity, non-binary conflicts using

an edge-weighting or penalty function may be introduced, and typical objectives include

minimizing the total interference or penalty via graph coloring [99, 100, 113] or maximizing

the total reward subject to the aggregate interference limit at each user [102, 114]. How-

ever, the vast majority of existing works do not consider geographic and channel contiguity

constraints and thus are not applicable to CA in the CBRS. In [101], Subramanian et. al.

introduced the notion of channel graph to enforce channel contiguity, where each vertex is a

channel consisting of several contiguous primitive channels and each edge indicates overlap-

ping channels. In Section 5.5.2, we will show that our proposed algorithm outperforms the

algorithm in [101] in terms of accommodating more users and meeting greater demand.

In this work, we incorporate the contiguity constraints by introducing (super)NC-pair

conflict graphs, which can also be used to represent channel availability and enhance coex-

istence awareness. Besides, the proposed conflict graph allows us to relate the PA CA and
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binary GAA CA to the classic the maximum (weighted) independent set problem [115–117]

and adopt a widely used heuristic-based algorithm that runs in polynomial-time with a per-

formance guarantee. To further enhance coexistence awareness, we consider non-binary GAA

CA and formulate the problem as utility maximization. We then prove the submodularity

of the utility function and propose a polynomial-time algorithm based on local search with

a provable performance guarantee.

5.2 Channel Assignment in CBRS

In this section, we describe CA scenarios for PA and GAA tiers based on the FCC rules

[25, 95, 96, 118]. In particular, we highlight CA challenges and opportunities in the CBRS:

geographic and channel contiguity, spatially varying channel availability, flexible demands,

and coexistence awareness. Then we present the architecture of SAS from the perspective of

dynamic CA.

5.2.1 PA CA Scenario

As per the FCC rules, up to 7 out of 10 channels in the 3550-3650 MHz band can be reserved

for PALs, and up to four channels can be aggregated by the same licensee in each license

(or service) area. Each deployed PA CBSD has an associated PPA with a default protection

contour that is calculated based on the signal level of −96 dBm/10 MHz, which cannot

extend beyond the licensee’s service area. A self-reported PPA contour is also acceptable,

so long as it is within the default PPA contour. If PPAs for multiple CBSDs operated by

the same licensee overlap, they would be merged into a single PPA. Note that interference

protection is enforced for each active PPA, i.e., the aggregate co-channel interference from

other PA or GAA CBSDs at any location within a PPA cannot exceed −80 dBm/10 MHz.

The FCC imposes two contiguity requirements for PA CA: 1) geographic contiguity –

an SAS must assign geographically contiguous PALs held by the same PA licensee to the

same channels in each geographic area, to the extent feasible; and 2) channel contiguity –

an SAS must assign multiple channels held by the same PA licensee to contiguous channels
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Figure 5.2: Illustration of the PA CA scenario. (a) A holds one PAL in its service area that

consists of tracts 1 and 3, while B stacks two PALs in its service area that consists of tracts

1 and 2. Each PA CBSD deployed by the licensee has a PPA that cannot extend beyond its

service area. GAA nodes may reuse assigned PAL channels at locations beyond the PPAs,

subject to the interference constraint. (b) Given three PAL channels, the SAS can assign

CH {1} in tracts 1 and 3 to A’s PALs and CH {2, 3} in tracts 1 and 2 to B’s PALs, so as to

meet the geographic and channel contiguity requirements.

in the same license area, to the extent feasible. An example is provided in Figure 5.2 that

illustrates the PA CA scenario1.

5.2.2 GAA CA Scenario

GAA CA differs from PA CA in the following aspects. First, channel availability for GAA

nodes can vary significantly depending on location. This is because a PAL channel is consid-

ered “in use” only within PPAs, and thus it may become available for GAA use at a location

1It is worth noting that in cases where two adjacent, non-overlapping service areas are assigned the same
channel, locations close to the service area boundaries may not be suitable for PA CBSD deployment.
Consider two PA CBSDs operated by different licensees are deployed close to the boundary. They can
cause interference to each other that exceeds the -80 dBm/10 MHz interference limit, if they operate
co-channel. While this issue may occur in practice, the SAS’s objective for PA CA is to assign channels
to PALs, and thus we do not consider addressing this issue as the SAS’s responsibility.
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beyond the PPAs (and their vicinities), if GAA transmission at that location does not cause

excessive interference at any location within PPAs.

As illustrated in the example in Figure 5.2, GAA nodes G1 and G4 are located in the

service area of PA licensees, but they are free to use all channels just like G5, since they do not

cause significant interference to any PA CBSD. In contrast, G2 cannot operate co-channel

with A2, and G3 cannot operate co-channel with B3, due to the interference constraint.

Although it is not desirable for G2 and G3 to operate co-channel as they would interfere with

each other, it is indeed acceptable as per the FCC ruling.

Second, a GAA node may also request multiple contiguous channels (up to a certain limit

such as four), and the demand could be rather flexible. For instance, a Wi-Fi-based node

may request a minimum of two contiguous channels for network operations, but it would be

very willing to receive four contiguous channels to obtain higher capacity. Although the SAS

is not obligated to meet the maximum demands of all GAA nodes, it would be expected to

maximize the number of assigned channels or the overall throughput with best efforts.

Third, GAA nodes are expected to coexist in the same frequency, space and time. In

this work, we consider co-channel coexistence enabled by Wi-Fi like MAC protocols such as

CSMA/CA in Wi-Fi [98] and LBT in LAA [32]. Traditional channel assignment techniques

[110–112] typically model interference as a binary conflict and avoid assigning the same

channel to any two conflicting nodes. However, two interfering nodes in close proximity are

able to detect each other’s transmission (no hidden nodes) and share the same channel(s)

in the CSMA/CA fashion. Hence, the SAS may exploit such opportunities to accommodate

more nodes in this case, especially when the spectrum is crowded. In this work, we further

consider non-binary conflicts to enhance coexistence awareness.

5.2.3 Architecture of SAS-Assisted Dynamic CA

As illustrated in Figure 5.3, the SAS is a centralized entity that consists of incumbent,

PA, and GAA managers. It communicates with the Environment Sensing Capability (ESC)

component, FCC databases (DBs), and CBSDs. The PA manager receives information on
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Figure 5.3: Architecture of SAS as a centralized entity from the perspective of dynamic CA.

A centralized PA/GAA CA algorithm will be implemented in the PA/GAA manager within

the SAS. Note that only data flows for PA/GAA CA purposes are highlighted.

DPAs and PALs, determines PAL channel availability based on the interference model and

requirements, and executes the PA CA algorithm to assign channels to PALs grouped by

service areas. The GAA manager takes as input 1) the PPAs and PA CA results, 2) GAA

CBSD registration information (e.g., location, transmit power, and antenna gain), 3) CBSD

demands and activity indices (i.e., traffic load indicators), and 4) the interference model2 and

requirements. It then determines channel availability for GAA nodes and executes the GAA

CA algorithm. Finally, the SAS will disseminate the PA and GAA CA results to individual

CBSDs (e.g., within 10s of seconds).

2Radio propagation models, despite their limitations, are still widely used for initial network planning, but
the interference relationship can also be determined from real measurements. Such measurement reporting
is already supported by the WInnForum SAS-CBSD protocol [119].
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According to the WInnForum SAS-CBSD protocol specifications [119], the protocol ex-

change between the SAS and CBSDs already exists, including requests and responses for

(de)registration, spectrum inquiry, grant (relinquishment) and heatbeat. Therefore, the

SAS can readily leverage registration and regular heartbeat messages to collect inputs from

CBSDs and use them for CA purposes, without introducing additional signaling overhead.

It is also important to note that the CA in the CBRS is indeed dynamic: changes in DPAs

and PALs would trigger PA CA, which further trigger GAA CA along with other factors (e.g.,

changes in GAA CBSD demands). Since DPA and PAL changes are relatively infrequent, PA

channel assignments will be expected to be quasi-stable, and channel reassignment occurs

presumably in the order of hours or days. In contrast, the SAS may have to aggregate

demands from all GAA nodes and perform GAA CA periodically (e.g., every 100s of seconds).

Nevertheless, the SAS can always take a snapshot of the CBSD network at a given time

instant and perform CA for PA and GAA tiers separately in a centralized fashion3.

5.3 Novel Conflict Graphs and Problem Formulation

In order to incorporate channel availability and contiguity, we define a NC pair as a channel

assignment that assigns a set of contiguous and available channels to a node, i.e., a PA

service area or a GAA node. We further introduce NC-pair conflict graph, where each vertex

is a NC pair and each edge indicates a conflict between two connected NC pairs due to the

one-channel-assignment-per-node or interference constraint. In the rest of this section, we

will describe conflict graph construction in detail and present our problem formulation for

each CA scenario.

5.3.1 Conflict Graph for PA CA

Let us consider a geographic region with M PA licensees. Each licensee i holds Ni PALs in

ni service areas, and there are a total of n =
∑M

i=1 ni service areas in total. Let Sij be the set

3The SAS itself may be implemented in a distributed cloud so as to exploit dedicated computing resources
spread over multiple virtual machines to perform CA for a specific region.
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of license areas that form the j-th service area of licensee i, and each license area in Sij has

Nij PALs4. There are a total of 10 PAL channels in the CBRS, denoted as Ω = {1, 2, ..., 10}.

Due to the DPAs of incumbents, the set of available PAL channels for Sij, denoted as Γ(Sij),

is a subset of Ω. Denote the set of valid channel assignments for Sij as Cij. It means that

each channel assignment C ∈ Cij consists of contiguous channels and satisfies C ∈ Γ(Sij) and

|C| = Nij. For instance, with Γ(Sij) = {1, 2, 3} and Nij = 2, we have Cij = {{1, 2}, {2, 3}}.

In the proposed conflict graph G = (V,E) for PA CA, each vertex is a NC pair (Sij, Cij)

that assigns channel(s) Cij to Sij, and an edge exists between (Sij, Cij) and (Slk, Clk), if

• i = j and l = k (i.e., Sij and Slk refer to the same service area), and Cij 6= Clk, or

• Sij ∩ Slk 6= ∅ and Cij ∩ Clk 6= ∅.

The first constraint requires each service area to take at most one channel assignment,

referred to as the one-channel-assignment-per-node constraint, while the second constraint

prevents two overlapping service areas from being assigned overlapping channels, which is

called the conflict constraint. It is worth noting that by selecting a vertex (Sij, Cij), i.e.,

assigning channel(s) Cij to Sij, the SAS can meet both the geographic and channel contiguity

requirements. An example of the proposed conflict graph for PA CA is provided in Figure 5.4.

Since a conflict due to interference exists only for two NC pairs that represent two over-

lapping service areas with overlapping channels, a sparse conflict graph would be expected

in practice. Therefore, adjacency lists would be preferred in general with a storage cost of

O(|V | + |E|). It takes O(1) time to add a vertex or edge, O(E) to remove a vertex, and

O(V ) to remove an edge. More details are available in [120].

Problem Formulation: Given a conflict graph G(V,E) for PA CA, the SAS wants to find

a scheme I ⊆ V so as to maximize the total number of served service areas without conflicts,

max
I⊆V
|I| s.t. e(u, v) /∈ E,∀u, v ∈ I, (5.1)

4The constraint that no more than seven PALs shall be assigned in any license area should have been
enforced during the licensing stage and can be verified by checking

∑M
i=1

∑ni

j=1 1{s∈Sij} ·Nij ≤ 7 for each
license area s, where 1{s∈Sij} is the indicator variable.
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Figure 5.4: Conflict graph for the PA CA example in Figure 5.2. Dashed and solid edges are

due to the one-channel-assignment-per-node and conflict constraints, respectively. The SAS

aims to choose the largest set of conflict-free vertices. One possible CA scheme consists of two

vertices in red, i.e, (SA, {1}) and (SB, {2, 3}). An alternative is (SA, {3}) and (SB, {1, 2}).

where | · | is the cardinality operator. We refer to the above problem as Max-Cardinality

CA5.

5.3.2 Conflict Graph with Binary Conflicts for GAA CA

Suppose that there are n GAA nodes at fixed locations in the same geographic region. The

ground set of channels is Ω = {1, 2, ..., 15}, and the SAS can determine the set of available

channels Γ(i) ⊆ Ω for each GAA node i. In this paper, we focus on CA by assuming fixed

transmit power for all nodes and leave joint channel and power assignment as future work.

Denote the demand set of node i as D(i) = {di1, di2, ...}, where dik is the number of

contiguous channels node i requests. For example, D(i) = {2, 4} means that node i requests

for two or four contiguous channels. By default, the SAS may set D(i) to {1, 2, ..., L}, where

L is the limit (e.g., L = 4). As a result, Γ(i) and D(i) jointly determine the set of valid

5Due to the one-channel-assignment-per-node constraint, the maximum possible size of I is n. In practice,
the PAL licensing process should ensure that a solution of size n can be found. When it is impossible to
do so due to incumbent activities, the SAS may have to temporarily divide a large service areas to smaller
ones that take non-contiguous channels.



106

channel assignments C(i). For example, with Γ(i) = {1, 4, 5} and D(i) = {1, 2}, we have

C(i) = {{1}, {4}, {5}, {4, 5}}.

In the proposed conflict graph G(V,E) for binary GAA CA, each vertex is a NC pair

(i, Ci) that assigns channel(s) Ci ∈ C(i) to node i, and an edge exists between (i, Ci) and

(j, Cj) if

• i = j and Ci 6= Cj, or

• i 6= j, Ci ∩ Cj 6= ∅, and node i would conflict or interfere with node j when assigned

the same channel based on the interference model.

The above two conditions correspond to the one-channel-assignment-per-node and con-

flict/interference constraints, respectively. Like the conflict graph for PA CA, the conflict

graph for GAA CA is expected to be sparse and thus adjacency lists are generally preferred.

In the rest of this section, we will characterize pairwise interference relationship, discuss

coexistence awareness under binary conflicts, and introduce a reward function to reflect

preferences of NC pairs. Then we will present our problem formulation for binary GAA CA.

Characterization of Pairwise Interference

First of all, the SAS needs to determine whether two GAA nodes are causing interference

to each other, which is a binary (yes-or-no) decision. According to the physical interference

model [121], a successful reception at a client from the CBSD is possible, if the SINR at

the client is greater than a certain threshold SINRmin. If client locations are known, the

SAS can use this criterion to determine the pairwise interference relationship. Otherwise,

the SAS may consider the worst-case scenario where clients are located at the service region

boundaries with respect to a certain signal level (denoted as γi) and determine if the inter-

ference from node j (denoted as γj) at the nearest boundary client exceeds SINRmin, i.e.,

γi
γj+σ2

n
≥ SINRmin, where σ2

n is the noise power. This determines the maximum allowable

interference from node j, that is, γj ≤ γi/SINRmin − σ2
n. In this work, we assume that
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Figure 5.5: Impact of node j’s interference on node i. (a) No conflict. Nodes i and j are free

to reuse the same channel if j’s interference region does not overlap with i’s service region.

(b) Type-I conflict. Node j causes non-negligible interference to i’s clients located in the

overlapping region, which cannot be detected by i without feedback from the clients such as

packet loss or throughput degradation. (c) Type-II conflict. Node j is within i’s CS or ED

range, and its interference can detected by i.

the SAS no prior knowledge about client locations6, and thus determining pairwise interfer-

ence relationship translates into determining whether the service region of node i overlaps

with the interference region of node j. Nevertheless, when information about client loca-

tions becomes available, the SAS can exploit this information to determine the interference

relationship more accurately.

While the service and interference regions can be highly irregular in practice, we assume

circular regions for illustration. Denote node i’s service region as Ri of radius ri, and node

j’s interference region as Rj,int of radius rj,int. Then there exists no conflict between i and j

due to j’ interference, if the distance is larger than ri+rj,int, regardless of the positions of i’s

clients (Figure 5.5(a)). As nodes i and j get closer, Rj,int starts to overlap with Ri, which

means that j may cause interference to clients that are possibly located in the overlapping

6Clients or end user devices are not required to register with the SAS or report their locations.
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region in the downlink. If the distance is smaller than ri + rj,int but larger than i’s CS/ED

range ri,cs, as shown in Figure 5.5(b), node j is said to be hidden from i, and the interference

from j cannot be detected by i without feedback from i’s clients. When the distance is less

than ri,cs (Figure 5.5(c)), node i is able to detect j’s transmission via CS or ED and achieve

harmonious co-channel coexistence through contention. In order to distinguish the above

cases, we call them type-I and type-II conflicts, respectively. Note that our interference

model is very similar to the popular protocol models in literature (e.g., [121–123]), which

can be easily implemented in the SAS using radio propagation models.

Coexistence Awareness

Ideally, two nodes should be assigned the same channel only when they do not conflict.

Nevertheless, GAA nodes have the lowest spectrum access priority and are expected to

coexist in the presence of conflicts. Compared with type-I conflicts, type-II conflicts can be

handled more easily and thus may be considered as coexistence opportunities to the SAS. To

that end, we introduce super-NC pair (S,C), where S is a super-node that consists of nodes

that can coexist on channel C with two conditions: 1) channel C is available at all nodes in S

and 2) nodes in S be within each other’s CS/ED range so that all conflicts can be gracefully

resolved. The super-node formation algorithm will be presented later in Section 5.4.1.

Figure 5.6 shows an example of the proposed conflict graph with and without coexistence

awareness. Suppose that nodes B, C are within each other’s CS/ED range. Then there are

two super-NC pairs ({B,C}, {1}) and ({B,C}, {2}). As illustrated in Fig. 5.6(b), when a

super-NC pair is identified, it is added to the graph and inherits the conflict relationship of

its children RC pairs. Then edges among its children RC pairs are removed. For instance,

removing the edge between (B, {2}) and (C, {2}) means that when (B, {2}) is selected,

({B,C}, {2}) will become invalid, but the SAS can still select (C, {2}), since B and C are

able to coexist under type-II conflicts.
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Figure 5.6: Example of (a) NC-pair conflict graph and (b) coexistence-aware NC-pair con-

flict graph. Suppose that A has two channels {2, 3} available and requests for two contiguous

channel, while B and C have two available channels {1, 2} and each requests for one channel.

A, B, and C are interfering with each other, but B and C are within each other’s CS/ED

range. Based on the conflict graph in (a), the SAS may assign CH {2, 3} to A and CH {1}

to C. After realizing that B and C are able to coexist under type-II conflicts, the SAS may

assign CH {1} to both B and C based on the conflict graph in (b).

Rewards

In GAA CA, the basic objectives of the SAS would include accommodating more nodes and

assigning more channels. As a result, NC pairs that assign more channels to more nodes are

generally more preferred. To reflect such preference, the SAS can define a reward (or vertex

weighting) function R : V 7→ R+ that assigns a positive reward to each vertex v = (S,C). If

the SAS aims to meet more demand by assigning more channels, the linear reward function

R(v) = R(S,C) = |S| · |C| may be used, which is equal to the total number of assigned

channels at each vertex. If the SAS wants to prioritize the objective of accommodating

more nodes, an alternative log reward function may be adopted, i.e., R(v) = R(S,C) =

|S|·(1+log(|C|)), which captures the decreasing benefit of a node getting additional channels.

Problem Formulation: Given a vertex-weighted conflict graph G(V,E,R) for n nodes for
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binary GAA CA7, the SAS wants to find a scheme I ⊆ V so as to maximize the total reward,

subject to the cardinality and conflict constraints, i.e.,

max
I⊆V

R(I), s.t.
∑
v∈I

|S(v)| = n; e(u, v) /∈ E,∀u, v ∈ I,

where R(I) =
∑

v∈I R(v) is the total reward, and S(v) is the set of nodes at vertex v.

In cases where the demand exceeds the supply, i.e., there are many more nodes than

available channels, the SAS may not obtain a feasible solution to the above problem. Hence,

the SAS may relax it to the following optimization problem.

Relaxed Problem Formulation: Given a vertex-weighted conflict graph G(V,E,R), the

SAS wants to find a scheme I ⊆ V so as to maximize the total reward subject to the conflict

constraint,

max
I⊆V

R′(I), s.t. e(u, v) /∈ E,∀u, v ∈ I, (5.2)

where R′(I) =
∑

v∈I(R(v)+λ|S(v)|) and λ ≥ 0 is the trade-off parameter chosen by the SAS.

Intuitively, the SAS aims to assign as many channels and serve as many nodes as possible

at the same time. We refer to the problem in (5.2) as Max-Reward CA.

5.3.3 Conflict Graph with Non-Binary Conflicts for GAA CA

In order to further exploit type-I conflicts, we extend the proposed conflict graph to incorpo-

rate non-binary conflicts and formulate the CA problem as a utility maximization problem.

We start with a conflict graph without any super-NC pair as constructed in Section 5.3.2.

To differentiate and quantify the impacts of a conflict on two interfering nodes, we consider

directed edges and use a penalty (or edge weighting) function P : E 7→ R+ to assign a non-

negative penalty to each directed edge. Let the penalty of e(u, v) ∈ E as P (e(u, v)) or simply

Pu,v, i.e., the penalty on v due to the interference from u. In general, we have Pu,v 6= Pv,u,

and Pu,v = 0 if e(u, v) /∈ E.

7In this work, we focus on the CBSD-centric graph representation and algorithms for GAA CA. Hence,
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Figure 5.7: Example of NC-pair conflict graph with non-binary conflicts. Each vertex is

associated with a reward and each directed edge has a penalty. Note that NC pairs belonging

to the same node are grouped as a cluster and there are no intra-cluster edges.

Figure 5.7 illustrates the proposed non-binary conflict graph. In addition to the directed

edges with penalties, the other main difference is that the set of NC pairs that belong to

the same node are grouped as a cluster, and there are no edges within a cluster. The one-

channel-assignment-per-node constraint is enforced instead by selecting at most one NC pair

from each cluster.

Problem Formulation: Given a vertex- and edge-weighted conflict graph G(V,E,R, P )

for n nodes for non-binary GAA CA, the SAS wants to find a scheme I ⊆ V so as to

max
I⊆V

U(I), s.t. |I ∩ Vi| ≤ 1,∀i = 1, 2, ..., n, (5.3)

where

U(I) =
∑
v∈I

R(v)− λ ·
∑
u,v∈I

Pu,v (5.4)

since GAA nodes are at fixed locations, the SAS does not need to consider node mobility. We will leave
extending this work to client-centric and studying the impact of end user device mobility on the proposed
algorithms as future work.
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is the utility function, and {Vi} are NC-pair clusters that form a partition of V , that is,

V =
⋃
i Vi and Vi ∩ Vj = ∅ for i 6= j. We refer to the above problem as Max-Utility CA.

5.4 Proposed Algorithms

In this section, we first present our super-node formation algorithm that identifies super-

nodes and then present a greedy algorithm for max-cardinality and max-reward CA. Finally,

we propose a local search based algorithm for max-utility CA, which exploits the structural

property of the utility function and provides a performance guarantee.

5.4.1 Super-Node Formation

As mentioned in Section 5.3.2, the objective of super-node formation is to identify a set of

super-nodes for a given channel C, i.e., nodes that have C available and that are within each

other’s CS/ED range. As shown in Algorithm 7, the main input is an undirected graph,

where each vertex is a node with C available, and each edge connects two nodes that are

within each other’s CS/ED range. Since a super-node is a clique (i.e., a subgraph where

every two distinct vertices are connected), the first task is to find all such cliques. In this

work, we adopt the well-known Bron-Kerbosch algorithm [124], a recursive backtracking

algorithm that lists subsets of vertices that are cliques, and no listed subset can have any

additional vertex without breaking its complete connectivity. Even though a node can belong

to multiple cliques, it randomly chooses a clique to join, since it cannot join two super-nodes

at the same time.

Although nodes in each clique (and any of its subsets) are able to coexist, the SAS may

want to divide them into smaller groups for load balancing. Denote the activity index of

node i as αi > 0, which is the estimated total number of channels it demands. The activity

index mapped to C is αi(C) = min (αi/|C|, 1) ∈ (0, 1]. To avoid overcrowded super-nodes,

the SAS can set a sum activity index limit ᾱ > 0 (e.g., ᾱ = 1.0) for each super node. As a

result, the task of grouping nodes (i.e., items with weights) into fewer super-radios (i.e., bins

with capacity of ᾱ) becomes the well-known one dimensional bin packing problem (BPP). In
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Algorithm 7 Super-Node Formation

Input: CS graph on channel C, activity index limit ᾱ

Output: A set of super-NC pairs U on channel C

1: Run Bron-Kerbosch algorithm to find cliques Q.

2: Each node in V that belongs to multiple cliques chooses one to join (e.g., randomly).

3: for all clique Q in Q do

4: Run FFD to identify super-nodes S w.r.t. ᾱ.

5: Add (S,C) for each S ∈ S s.t. |S| > 1 to U .

6: end for

7: return U

this work, we adopt a heuristic-based algorithm called first fit decreasing (FFD) [125]: it first

creates a sequence of super-nodes (i.e., empty bins) and sorts nodes in non-increasing order

of activity index; then it places each node into the lowest-indexed super-node with sufficient

remaining space. Latest analysis has shown that FFD uses no more than 11/9 OPT + 6/9

bins, where OPT is the number of bins given by the optimal solution [126].

5.4.2 Algorithm for Max-Cardinality and Max-Reward CA

Our proposed graph representation enables us to map the max-cardinality CA in Eq. (5.1) to

the classic maximum independent set (MIS) problem, and the max-reward CA in Eq. (5.2)

to the generalized maximum weighted independent set (MWIS) problem. Formally, given a

vertex-weighted graph G(V,E,R), a subset I ⊆ V is an independent set (IS) if for any two

vertices u, v ∈ I, it holds that e(u, v) /∈ E. The weight of a set I is R(I) =
∑

v∈I R(v), and

an IS I is maximum if there is no IS I ′ 6= I such that R(I) < R(I ′).
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Since M(W)IS can be difficult8, we adopt simple heuristic-based algorithms9 like GMWIS

(Algorithm 8) to obtain an approximate solution. Denote by θ(G) the weight of a maximum

IS, and by A(G) the weight of the solution obtained by algorithm A. The performance ratio

is defined by ρA = infG
A(G)
θ(G)

. It has been shown in [116] that GMWIS outputs an IS of weight

at least
∑

v∈V
R(v)

δG(v)+1
, where δG(v) is the vertex degree of v and its performance ratio is 1

∆G
,

where ∆G is the maximum vertex degree of G. Note that the computational complexity of

Algorithm 8 is O(|V |2), since each iteration takes O(|V |) operations and there are up to |V |

iterations.

Algorithm 8 Greedy algortihm for MWIS (GMWIS)

Input: Vertex-weighted undirected graph G(V,E,R)

Output: A maximal independent set I in G

1: Pick a vertex v ∈ V that maximizes R(v)
δG(v)+1

.

2: Add v to I and remove v and its neighbors from V .

3: Repeat steps 1 and 2 until all vertices in V are removed.

4: return I

5.4.3 Proposed Algorithm for Max-Utility CA

In this section, we provide brief background on submodularity and matroids. We then show

that the max-utility CA problem in Eq. (5.3) is matroid-constrained submodular maximiza-

tion and proposed a polynomial-time algorithm with a provable performance guarantee.

8The M(W)IS problem on general graphs is known to be NP-hard [115], but it may become easy on simple
classes of graphs. For instance, MWIS can be solved in linear time in any tree graph. Polynomial time
algorithms exist for MWIS in other classes of graphs including bipartite graphs, line graphs, circle graphs,
claw-free graphs and planar graphs. See [127] for a brief summary.

9Apart from GMWIS, there exist other algorithms for MWIS. For example, authors in [117] defined a
metric called the weighted average degree and proposed greedy algorithms with provable performance.
Randomized algorithms like Tabu search [128] may also provide good results for MWIS. In this study,
we adopt GMWIS due to its simplicity and low computational complexity, but more sophisticated MWIS
algorithms may be implemented in practice.
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Background on Submodularity and Matroids

Submodularity is a property of set functions that captures the diminishing returns behavior,

that is, adding a new element introduces greater incremental benefits, if there are fewer

elements so far, and less, if there are more elements. The formal definition is as follows.

Definition 5.1 (Submodularity). Given a finite set V , a function f : 2V 7→ R is submodular

if, for any subsets S, T ⊆ V ,

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

An equivalent definition is the following [91]. A set function is submodular if, for any

sets S ⊆ T ⊆ V and any v ∈ V \ T ,

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ). (5.5)

Definition 5.2 (Matroid). Let V be a finite set, and let I be a collection of subsets of V .

A set system M = (V, I) is a matroid if the following three conditions hold: (i) ∅ ∈ I, (ii)

if B ∈ I, then A ∈ I for all A ⊆ B, and (iii) if A,B ∈ I and |A| < |B|, then there exists

v ∈ B \ A such that (A ∪ {v}) ∈ I.

Given a matroid M, I(M) is called the set of independent sets of M. A sub-class of

matroids called partition matroids is defined as follows.

Definition 5.3 (Partition Matroid). Let V be a finite set, and V1, ..., Vm be a partition of

V , that is, a collection of sets such that V1 ∪ ...Vm = V and Vi ∩ Vj = ∅ for i 6= j. Let k1, ...,

km be a collection of nonnegative integers. Define a set I by A ∈ I iff |A ∩ Vi| ≤ ki for all

i = 1, ...,m. Then M = (V, I) is a matroid, called a partition matroid.
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Matroid-Constrained Submodular Maximization

As we can see, the constraint in the max-utility CA formulation in Eq. (5.3) defines a partition

matroid,

M = (V, I), where I = {I : |I ∩ Vi| ≤ 1,∀i = 1, 2, ..., n} and {Vi} is a partition of V,

(5.6)

and we can show that the utility function in Eq. (5.4) is a submodular set function.

Lemma 5.1. The utility function U(·) in Eq. (5.4) is submodular.

Proof. See Appendix 5.7.1 for proof.

Hence, the problem max{U(I) : I ∈ I(M)} is an instance of matroid-constrained sub-

modular maximization, where M is the partition matroid defined in Eq. (5.6).

Proposed Algorithm

Our algorithm UM (Algorithm 9) is based on the (approximate) local search procedure LS

(Lines 6-16). It quickly finds an initial solution by iteratively adding the next element with

the maximum incremental utility (Lines 6-10) and then searches for the locally optimal

solution under the local delete (Line 12), add and swap (Line 13) operations subject to the

matroid constraint. To achieve faster convergence, the parameter ε can be set to obtain an

approximately locally optimal solution. Note that LS is called twice in UM: it first obtains I1

for the original matroid M and then I2 for the new matroid M′, which corresponds to the

partition {V ′i } of V ′ (i.e., V \ I1). The set, either I1 or I2, that yields a greater utility is

returned.

Theorem 5.1 shows that UM (Algorithm 9) provides a performance guarantee.

Theorem 5.1. Algorithm 9 returns a solution I with the following performance guarantee

U(I) ≥ 1

(4 + 2ε)
[U(OPT ) + 2Umin], (5.7)
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Algorithm 9 Utility Maximization (UM)

Input: Partition matroid M = (V, I), utility function U(·), and parameter ε > 0

Output: I – Selected NC pairs

1: I1 ← LS (M, U, ε)

2: I ′ ← {I : |I ∩ V ′i | ≤ 1}, where V ′i = Vi \ I1,∀i = 1, 2, ..., n

3: Define M′ = (V ′, I ′), where V ′ = ∪iV ′i
4: I2 ← LS (M′, U, ε)

5: return I ← arg maxI∈{I1,I2} U(I)

Local Search Procedure (LS):

Input: Matroid M = (V, I), submodular function f(·), and parameter ε ≥ 0

Output: A selected subset I

6: I ← ∅, v ← arg max{f(u)|u ∈ V }, N ← |V |.

7: while v 6= ∅ and f(I ∪ {u}) > (1 + ε
N2 )f(I) do

8: I ← I ∪ {v}

9: v ← arg max{f(I ∪ {u})− f(I)|u ∈ V \ I and I ∪ {u} ∈ I}

10: end while

11: while true do

12: if there exists d ∈ I s.t. f(I \ {d}) ≥ (1 + ε
N2 )f(I) then I ← I \ {d}, continue

13: if there exists a ∈ V \ I and d ∈ I ∪ ∅ s.t. I \ {d} ∪ {a} ∈ I and f(I \ {d} ∪ {a}) ≥

(1 + ε
N2 )f(I) then I ← I \ {d} ∪ {a}, continue

14: break

15: end while

16: return I
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where OPT is the optimal solution to max{U(I) : I ∈ I(M)}, and Umin = min{U(I) : I ∈

I(M)}. If U(·) is non-negative (i.e., Umin ≥ 0), we have U(I) ≥ 1
(4+2ε)

U(OPT ).

Proof. See Appendix 5.7.2 for proof.

Proposition 5.1. Algorithm 9 is in polynomial time with runtime bounded by O(1
ε
N3 logN).

Proof. See Appendix 5.7.3 for proof.

5.5 Evaluation

We implemented the proposed algorithms in MATLAB and compare their performance

against baseline algorithms via extensive simulations. A real-world Wi-Fi hotspot location

dataset in NYC [106] is used to simulate a dense outdoor scenario. Our results demonstrate

the advantages of the proposed graph representation and algorithms for dynamic CA in the

CBRS band.

5.5.1 Evaluation of Max-Cardinality CA

For PA CA, we evaluate the proposed algorithm based on GMWIS (Algorithm 8) and com-

pare it against a baseline algorithm called Non-Preemptive Sum Multi-Coloring (npSMC)

[129]. To the best of our knowledge, npSMC is the only existing algorithm that explicitly

considers channel contiguity, applicable to the PC CA scenario in the CBRS band.

Baseline: The algorithm npSMC was proposed in [129] for scheduling dependent jobs on

a graph, where each vertex v is a job with a length or execution time x(v) (i.e., required

number of colors) and each edge indicates two dependent jobs that cannot be scheduled at

the same time. Given a certain amount of time units or colors, the objective is to color

as many vertices as possible, such that each vertex is assigned a desired amount of distinct

contiguous colors and adjacent vertices are assigned disjoint sets of colors.

Given a graph G(V,E, x), npSMC first puts vertices of the same length to the same group

by adding an edge for each pair of vertices of different lengths, that is, E ′ = E ∪ {(u, v) :
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x(u) 6= x(v)}. This ensures that at any given time, vertices from the same group are being

colored. Then it finds a maximal independent set (e.g., Algorithm 8) in the new graph

G′ = (V,E ′) and color the selected jobs to completion non-preemptively in each iteration,

until colors are exhausted.

Setup: We consider a square area of width m that consists of m2 census tracts, as shown in

Figure 5.8(a). We generate randomly located circular areas of radius rs and consider census

tracts that overlap with a circular area as a service area for PA CA purposes. The number

of PALs held by the same PA licensee for each service area is uniformly selected from [1, 4]

at random. To simulate the worst case, we generate as many service areas as possible (up to

1000 trials) subject to the seven-PALs-per-census-tract limit. Since the maximum possible

size of a solution I is equal to the total number of service areas n, we use the metric called

ratio of service areas served, p = |I|/n to measure the performance for PA CA.

Results: To simulate cities of different sizes, we set rs to 1 and vary m from 5 to 30 with a

step of 5. For instance, with an optimal size of 4, 000 people for a census tract, 100 census

tracts (m = 10) corresponds to a medium-sized city. As mentioned in Section 5.2.1, there

are a total of 10 PAL channels. Results are averaged over 100 iterations. In each iteration,

the same seed is used for the baseline and proposed algorithms for fair comparison.

As shown in Figure 5.9(a), the proposed algorithm serves 93.7% of service areas on

average, as compared to 70.1% achieved by npSMC, with an improvement of 33.7%. We

observe that due to the grouping in npSMC, service areas with larger demands tend to have

lower priorities and thus often obtain no channels, whereas the proposed algorithm considers

all service areas equally.

We then set m to 10 and vary rs from 0.4 to 1.4. As shown in Figure 5.9(b), the average p

is 94.3% and 71.4% for the proposed algorithm and npSMC, respectively. The improvement

is as high as 32.0%. To summarize, our results show that the proposed algorithm is able to

consistently meet more than 93.0% of PA demands with a significant improvement over the

baseline algorithm.
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Figure 5.8: (a) Example of census tracts for PA CA. The set of census tracts that overlap

with a red circle are treated as a service area for a PA licensee. In this example, each circle

is of radius 0.4 and each service area contains up to four census tracts. (b) Examples of

Wi-Fi hotspot locations in NYC treated as CBSDs locations for GAA CA. In this example,

there are 190 GAA CBSDs inside the circle centered at the (randomly selected) location

(40.74,−73.99) with a radius of 1 km.

5.5.2 Evaluation of Max-Reward CA

In this section, we evaluate the proposed algorithm (Max-Reward) based on GMWIS (Algo-

rithm 8) for binary GAA CA and compare it against the Max-Revenue Algorithm (MRA)

in [101]. Note that npSMC is not applicable, as it requires the same set of contiguous available

channels at each node and cannot handle flexible demands. We also evaluate Max-Reward

with different settings to study the impact of reward function and coexistence awareness.

Baseline: MRA was proposed for bidding-based spectrum allocation in [101]. It selects a



121

5 10 15 20 25 30

Area Width m

0.5

0.6

0.7

0.8

0.9

1  

p

Max-Cardinality CA

Baseline (npSMC)

(a)

0.4 0.6 0.8 1  1.2 1.4

Radius r
s

0.5

0.6

0.7

0.8

0.9

1  

p

Max-Cardinality CA

Baseline (npSMC)

(b)

Figure 5.9: Performance of the proposed and baseline algorithms vs. (a) area width and (b)

radius. The proposed algorithms consistently serves over 93.0% of PA demands for different

area widths and radii with a significant improvement over the baseline algorithm.

set of non-conflicting NC pairs so as to maximize the total revenue, which corresponds to

the total reward in our case. It is essentially a greedy algorithm that iteratively selects the

next non-conflicting NC pair with the maximum incremental revenue. Note that MRA is

coexistence unaware and it is unaffected by the choice of the reward function.

Setup: We consider a scenario where the SAS is serving a circular region of radius r (in km)

that is randomly located in the densely populated Manhattan area of NYC, as illustrated in

Figure 5.8(b). We import outdoor Wi-Fi hotspot locations within the circular region from a

publicly available dataset [106] and treat them as GAA nodes.

In order to create location-dependent channel availability for GAA nodes, we consider

two PA licensees that are assigned with CH 1-4 and CH 5-7, respectively, and generate 10

randomly deployed PA nodes for each licensee. A channel is considered available for a GAA
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node, if its −80 dBm/10 MHz interference contour10 does not overlap with any PA node’s

default PPA (Section 5.2.1). Each GAA node has a demand set D = {1, 2, 3, 4} and an

activity index α in U [0, 4]. In this work, we adopt the PA interference protection rules for

determining the interference relationship between two GAA nodes, that is, a GAA node j

is said to be interfering with i, if its interference at any location within i’s −96 dBm/10

MHz service contour is higher than −80 dBm/10 MHz. The CS/ED threshold is set to −75

dBm/10 MHz (adapted from −72 dBm/20 MHz in [32]). The transmit power is 30 dBm for

each node, and transmit and receive antenna heights are 3 and 1.5 meters, respectively [118].

We adopt the widely used COST-231 Hata [130] as the propagation model. Two metrics

are adopted to measure the performance: 1) percentage of nodes served, denoted as p1, and

2) percentage of demands served, denoted as p2, i.e., the ratio between the total number of

assigned channels and the total demand.

Results: In order to study the performance of Max-Reward for regions with different sizes,

we vary r from 0.4 km to 1.2 km. The trade-off parameter λ and the sum activity index

limit ᾱ are set to 0 and 1, respectively. Results are averaged over 30 iterations.

As shown in Figure 5.10, the size of the SAS’s service region does not have a significant

impact on the performance of a CA algorithm. Without coexistence awareness, Max-Reward-

Linear and Max-Reward-Log achieve an average p1 larger than 72.6% and 90.5% in all cases

and outperform the baseline algorithm by 10.2% and 36.4% on average, respectively.

On the other hand, Max-Reward-Log has very close performance with the baseline algo-

rithm in terms of average p2, while Max-Reward-Linear outperforms the baseline by 10.4%

on average. The above behaviors of Max-Reward are not surprising, since the log reward

function encourages assigning a channel to nodes with fewer channels, leading to a larger p1

but a smaller p2.

10Strictly speaking, −80 dBm/10 MHz is the limit for the aggregate co-channel interference, and a lower
limit may be chosen for pairwise co-channel interference. Nevertheless, the choice of this limit does not
affect our evaluation, since the same set of available channels are used as input for both the proposed and
baseline algorithms.
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Figure 5.10: Performance of the proposed and baseline algorithms in terms of average p1

in (a) and p2 in (b) as function of n. The proposed algorithms outperform the baseline

algorithm and this advantage is further enhanced by coexistence awareness.

We can also observe that coexistence awareness effectively improves the performance of

Max-Reward-Linear in terms of average p1 by 11.7% but has little effects on Max-Reward-

Log. On the other hand, it is able to improve both Max-Reward-Linear and Max-Reward-Log

in terms of average p2 by 12.8% and 17.4% on average, respectively.

Impact of λ and ᾱ: In order to study the impact of λ, we set r = 0.8, ᾱ = 1, and vary λ from

0 to 8. As illustrated in Figures 5.11(a) and 5.11(b), there exists a trade-off between p1 and

p2 when choosing λ for the proposed algorithm. With a larger λ, the proposed algorithm

prioritizes the objective of serving more nodes by assigning more weight on the cardinality

of the node set in each vertex, thus increasing p1 but reducing p2. We also see that that

with a large λ, coexistence awareness does not help improve p1 but is still able to effectively

improve p2.

We then set r = 0.8, λ = 0 and vary ᾱ from 0 to 5. As shown in Figures 5.11(c) and

5.11(d), a larger ᾱ value allows more nodes to form a super-node, thus increasing both p1
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ᾱ

(c)

0 1 2 3 4 5

Sum Activity Index Limit

20

40

60

80

100

A
v
g

 p
2
 (

%
)

Linear, w/ coex

Log, w/ coex

Linear, w/o coex

Log, w/o coex

ᾱ
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Figure 5.11: Impact of λ and ᾱ on the performance of the proposed algorithm in terms of

average p1 and p2. There exists a trade-off between p1 and p2 when choosing λ. In addition,

increasing ᾱ can improve both p1 and p2, but such improvements no longer exist when ᾱ is

large enough and all nodes in a clique are considered as a single super-node.
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and p2. But such improvement saturates at ᾱ = 2, at which point all nodes in a clique will

be considered as a super-node and thus further increasing ᾱ does not help any more.

5.5.3 Evaluation of Max-Utility CA

In this section, we evaluate the proposed Max-Utility algorithm UM (Algorithm 9) for non-

binary GAA CA and compare its performance against a random selection-based algorithm,

which randomly selects a NC pair from each cluster. It repeats the process multiple times

(e.g., 10000) and returns the one with the maximum utility.

Setup: We use the same setup in Section 5.5.2 and set ε = 0 for Algorithm 9. The linear

reward function is used and represents the number of channels assigned to each node, which

is proportional to the best-case capacity that can be achieved in the absence of interference.

There are many options for penalties from literature. For example, Padhye et al. defines

the link interference ratio as the penalty [131], that is, the ratio of aggregate output of

the links when they are active simultaneously, to the aggregate throughput when they are

active individually. This penalty can be empirically measured via broadcast probes. In [132],

Rei et al. improves the scalability of the previous approach by developing an interference

model based on RSSI measurements. In [99], the penalty is defined as the number of clients

associated with two interfering nodes that are affected if the two nodes are assigned the same

channel. Due to the ease of practical implementation, we use the interference estimated from

a radio propagation model as penalty as in [100,133] (normalized by the maximum pairwise

interference) in this work11. The performance is measured in terms of the achieved utility

and the total amount of interference.

11While the number of assigned channels is used as the reward and the estimated pairwise interference is
chosen as the penalty in this work, our proposed algorithm is not limited to the chosen reward or penalty
function. For example, the capacity averaged over client device locations [17] (assuming no interference,
i.e., best-case) can be adopted as the reward, and the amount of capacity reduction due to the interference
introduced by the conflicting node as the penalty. In this case, the total utility (λ = 1) reflects the
overall capacity under the pairwise interference relationship. Besides, λ can be adjusted to account for the
difference between the actual capacity reduction and the capacity reduction under pairwise interference.
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Results: We first set λ = 1 and vary the radius r from 0.4 km to 1.2 km. Results averaged

over 30 iterations are provided in Figure 5.12. As we can see, Max-Utility is able to achieve

a much greater utility than random selection, and the relative gains are more significant as

SAS’s service region becomes larger. The improvement in average utility is more than 29.5%

in all cases and reaches 50.2% with r = 1.2 km. On the other hand, the total interference

generated by Max-Utility is always smaller than random selection.
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Figure 5.12: Performance of Max-Utility and random selection in terms of (a) averaged utility

and (b) averaged total interference as a function of the radius of SAS’s service region. Max-

Utility achieves a much greater utility and smaller total interference than random selection.

In order to study the impact of λ, we set r to 0.8 and vary λ from 100 to 103. Results

averaged over 30 iterations are shown in Figure 5.13. We observe that increasing λ reduces

the achieved utility, but the decrease for Max-Utility is slower than random selection. This is

because a larger λ implies a larger weight on the interference, which effectively makes Max-

Utility avoid selecting NC pairs with larger interference. It also explains the decrease in the

total interference for random selection. In all cases, Max-Utility achieves a much greater

utility while keeping the total interference much smaller than random selection. Figure 5.14
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Figure 5.13: Performance of Max-Utility and random selection in terms of (a) averaged

utility and (b) averaged total interference as a function of the trade-off parameter λ. We can

see that increasing λ puts more weights on the interference, thus leading to less interference

at the cost of reduced utility.

illustrates the performance of Max-Utility in terms of p1 and p2. We can see with non-

binary GAA CA formulation, the SAS can serve almost all nodes and demands. As λ keeps

increasing, p1 and p2 will decrease accordingly, because a large λ value forces the SAS to

avoid assigning overlapping channel(s) to nodes that would cause significant interference to

each other.

5.6 Conclusion and Future Work

In this paper, we studied SAS-assisted dynamic CA for the 3.5 GHz CBRS band. We pro-

posed the NC-pair conflict graph to model pairwise interference, spatially varying channel

availability and channel contiguity. We further introduced super-NC pairs to exploit coexis-

tence opportunities under type-II conflict and proposed the super-node formation algorithm

to identify super-nodes. The proposed conflict graph enables us to formulate PA CA as max-
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Figure 5.14: Performance of the proposed algorithm in terms of p1 (percentage of nodes

served) and p2 (percentage of demands served) as a function of (a) radius with λ = 1 and

(b) trade-off parameter with r = 0.8. We can see that p1 and p2 obtained by the proposed

algorithm are close to 100% and do not decrease significantly as radius increases. In contrast,

as λ increases, the SAS needs to avoid assigning the same channel(s) to conflicting nodes

that generate large interference, thus leading to a decrease in both p1 and p2.

cardinality CA and GAA CA with binary conflicts as max-reward CA, and further map them

to the classic maximum (weighted) independent set problem. We adopted a heuristic-based

algorithm to obtain approximate solutions. To further enhance coexistence awareness, we

extended binary conflicts to non-binary by assigning each conflict a penalty. Then we formu-

lated non-binary GAA CA as utility maximization. We showed that the utility function is

submodular and our problem is an instance of matroid-constrained submodular maximiza-

tion. We proposed a polynomial-time algorithm based on local search for max-utility CA

that provides a provable performance guarantee.

Our results based on a real-world dataset show that the proposed max-cardinality algo-

rithm consistently serves over 93.0% of service areas and outperforms the baseline algorithm
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by over 30.0% for PA CA. For binary GAA CA, the proposed max-reward algorithm with

linear rewards can accommodate 10.2% more nodes and serve 10.4% more demand on av-

erage than the baseline algorithm, and coexistence awareness can effectively improve the

performance of the proposed algorithm. For non-binary GAA CA, the proposed max-utility

algorithm achieves 29.5% more utility with much less total interference compared to random

selection.

There are several interesting directions that could be explored. First, it would be of

practical importance to address possible implementation issues and generalize the current

pairwise interference model to the physical interference model to account for accumulated

interference. Second, it is very likely that there are multiple SASs operated by different

operators. Therefore, it is an interesting question to perform multi-SAS channel assignment

through the inter-SAS protocol while achieving desirable objectives such as fairness.

5.7 Appendix

5.7.1 Proof of Lemma 5.1

Proof. Consider any two sets S, T with S ⊆ T ⊆ V and any v ∈ V \ T . Since Pu,v ≥ 0, we

any u, v ∈ V , we have

U(S ∪ {v})− U(S) = R(v)− λ ·
∑
u∈S

[Pu,v + Pv,u]

≥ R(v)− λ ·

∑
u∈S

[Pu,v + Pv,u] +
∑
u∈T\S

[Pu,v + Pv,u]


= R(v)− λ ·

∑
u∈T

[Pu,v + Pv,u] ≥ U(T ∪ {v})− U(T ),

which establishes the submodularity of U(·) by the definition in Eq. (5.5).

5.7.2 Proof of Theorem 5.1

Proof. Let OPT1 = OPT ∩ V , and OPT2 = OPT ∩ V ′. Hence, we have OPT1 = OPT .

It has been shown in [134] that the LS procedure returns an approximately locally optimal
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solution I such that (2 + ε)f(I) ≥ f(I ∪ C) + f(I ∩ C) for any C ∈ I, where ε ≥ 0 is the

parameter used in LS. The above result implies that

(2 + ε)U(I1) ≥ U(I1 ∪OPT1) + U(I1 ∩OPT1)

(2 + ε)U(I2) ≥ U(I2 ∪OPT2) + U(I2 ∩OPT2).

Using U(I) ≥ max{U(I1), U(I2)}, we have

(4 + 2ε)U(I) ≥ [U(I1 ∪OPT1) + U(I2 ∪OPT2)] + U(I1 ∩OPT1) + U(I2 ∩OPT2)

≥ U(I1 ∪ I2 ∪OPT1) + [U(OPT2) + U(I1 ∩OPT1)] + U(I2 ∩OPT2)

≥ U(I1 ∪ I2 ∪OPT1) + U(OPT1) + U(I2 ∩OPT2)

≥ U(OPT1) + 2Umin = U(OPT ) + 2Umin.

The first inequality is obvious. The second inequality follows from submodularity, using

(I1 ∪OPT1) ∪ (I2 ∪OPT2) = I1 ∪ I2 ∪OPT1 and (I1 ∪OPT1) ∩ (I2 ∪OPT2) = OPT2. The

third inequality is also follows from submodularity, using OPT2 ∪ (I1 ∩OPT1) = OPT1 and

OPT2 ∩ (I1 ∩OPT1) = ∅. Hence, we have U(I) ≥ 1
(4+2ε)

[U(OPT ) + 2Umin].

5.7.3 Proof of Proposition 5.1

Proof. Let the first element of I be v1 (Line 6 in LS), and we have

f(OPT ) ≤
∑

s∈OPT

f(s) ≤ |OPT | · f(s∗) ≤ N · f(s∗) ≤ N · f(v1)

where s∗ = arg maxs∈OPT f(s) and the first inequality is due to submodularity. Since f(v1) ≥
f(OPT )

N
and each local operation increases the value by a factor (1 + ε

N2 ), the maximum

number of iterations is log1+ ε
N2

f(OPT )
f(OPT )

N

= O(1
ε
N2 logN). As each iteration requires at most

N evaluations of the objective function f(·), it implies that the computational complexity

of LS is O(1
ε
N3 logN) in the worst case. Despite calling the procedure LS twice, the overall

computational complexity of UM (Algorithm 9) is O(1
ε
N3 logN), which is polynomial in N .



131

Chapter 6

MONITORING CHANNEL ACCESS TIME FAIRNESS FOR
WI-FI/LTE-U COEXISTENCE

In this previous chapter, we studied the problem of SAS-assisted dynamic channel as-

signment in the 3.5 GHz CBRS band. We proposed novel graph representation to capture

channel availability and contiguity constraints as well as the coexistence opportunities. We

further proposed channel assignment algorithms and showed that they outperform the base-

line mechanisms through extensive simulations.

In this chapter, we look at another resource allocation problem, that is, channel access

time fairness among different radio access technologies in shared bands. As discussed in

previous chapters, unlicensed devices and networks operating in shared bands usually have

equal spectrum access priorities and are expected to coexist in the same frequency, time, and

space. It is widely believed that Wi-Fi and LTE are among the most dominant technologies

that will be deployed in shared bands in the next few years, which have different channel

access mechanisms. With CSMA/CA, each Wi-Fi device senses the medium and allows others

to finish transmission before attempting its own transmission. In contrast, LTE transmits

continuously without sensing, as it traditionally operates exclusively in bands owned by

operators. As a result, LTE would block Wi-Fi transmissions during coexistence, resulting

in degraded Wi-Fi performance [35].

In order to achieve time-division-multiplexing based coexistence with Wi-Fi, two types of

LTE have been proposed for unlicensed operations: LAA and LTE Unlicensed (LTE-U). The

former employs LBT, while the latter is duty-cycle based and proposed for supplementary

downlink. LTE-U exploits existing LTE functionality (almost blank subframes [40]) to create

alternating ON/OFF periods so as to accommodate Wi-Fi transmissions. In this work, we
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are interested in LTE-U that is intended for earlier commercialization in markets where

regulations do not require LBT, such as China, Korea, India and the USA.

Wi-Fi/LTE-U coexistence has drawn growing attention from different aspects [33,39,40],

and one important consideration is fairness. Since both are time-division-multiplexing based,

one natural criterion is fair sharing in channel access time, i.e., fraction of LTE-U ON duration

in each cycle (aka. duty cycle, a quantity between 0 and 1) should not be more than a limit.

For example, when coexisting with a Wi-Fi network, the LTE-U AP1 should not transmit for

more than 50% of the time. In fact, this criterion has already been adopted by the LTE-U

Forum as part of the coexistence specifications [38].

Although many researchers have studied LTE-U duty cycle adaptation design for fair

sharing (e.g. [37,41,42]), a concerning fact has often been neglected: Wi-Fi nodes, as benign

users, can only access the channel during LTE-U OFF time, while ON/OFF time is under

unilateral control of LTE-U APs that are considered as new entrants to the unlicensed spec-

trum. Therefore, LTE-U APs, as self-interested users, will have incentives to misbehave, that

is, transmitting with a larger duty cycle that exceeds the limit, so as to gain a greater share

in channel access time and throughput. This is a realistic concern (from Wi-Fi operators and

users), especially when LTE-U operators are not likely to disclose details of their proprietary

duty cycle adaptation algorithms. Such concern persists, unless a proper fairness monitoring

scheme is in place to enforce the coexistence specifications defined by the LTE-U Forum, and

this need has also been acknowledged in [135].

In this work, we propose monitoring of Wi-Fi/LTE-U channel access time fairness as a

responsibility the spectrum manager (e.g., DBA in TVWS and SAS in CBRS). Specifically,

the spectrum manager assigns a reasonable duty cycle limit to a LTE-U AP, and estimates

its duty cycle to see if it exceeds the assigned limit. For the above purpose, an energy

detector may be deployed to measure the total ON duration and subtract the portion due to

Wi-Fi activities (e.g., by detecting Wi-Fi preambles). In fact, such energy detector is already

1Throughput the paper, LTE-U eNB (Evolved Node B) is referred to as access point (AP) for the purpose
of convenience.
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available at each Wi-Fi device, which is able to measure ON duration with 1 µs granularity.

It means that the spectrum manager can collect PHY layer observations from a Wi-Fi AP

close to the target LTE-U AP and estimate its duty cycle to detect possible misbehavior.

We make the following specific contributions:

• We consider coexistence between a LTE-U network and a Wi-Fi network and propose a

scheme that allows the spectrum manager to estimate the LTE-U duty cycle in a cycle

period based on observed busy periods from a local Wi-Fi AP without interrupting

normal operations of the Wi-Fi network.

• We propose a thresolding scheme for misbehavior detection. We analyze its detection

performance in terms of detection probability Pd and false alarm probability Pfa. Our

analysis shows that smaller Wi-Fi packets and a larger LTE-U cycle period would

improve Pd and reduce Pfa.

• We implement the proposed schemes in ns3 [136] and evaluate their performance with

extensive experiments. Our results show that for a typical LTE-U cycle period of 160ms

with a 2ms idle gap every 20ms ON duration [37], the estimation error is within ±1%

of the true duty cycle. Besides, the proposed scheme detects misbehavior with a duty

cycle that is 2.8% larger than the limit with Pd at least 95% and Pfa less than or equal

to 1%.

The remainder of this chapter is organized as follows. In Section 6.1, a brief review of

related work is provided. Sections 6.2 and 6.3 present the system model and the proposed

fairness monitoring schemes, respectively. Evaluation results are provided in Section 6.4 and

this study is concluded in Section 6.6.

6.1 Related Work

Wi-Fi and LTE-U coexistence is being actively studied in the recent years. In [40], Almeida

et al. implemented LTE-U duty cycles by modifying the almost blank subframe functionality.
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Such duty cycle can be static as in [137], or adaptive as in Carrier Sensing Adaptive Trans-

mission (CSAT), which was proposed by Qualcomm [37]. It allows a LTE-U AP to sense and

measure medium utilization during OFF time, and adjust duty cycles accordingly. In [138],

Cano et al. proposed a duty-cycle mechanism to achieve proportional fairness among LTE-U

and WiFi, by selecting an appropriate probability to access the channel and transmission du-

ration. Other techniques include Q-learning [41] and the multi-armed bandit approach [42],

which dynamically adjust duty cycles based on channel usage.

In reality, duty cycle adaptation schemes are most likely to be proprietary, and their

details would not be revealed by LTE-U operators. Therefore, without a proper duty cycle

estimation and misbehavior detection scheme, fair sharing between Wi-Fi and LTE-U can

only be at the mercy of LTE-U operators. In this work, we propose a scheme that allows

the spectrum manager to estimate LTE-U duty cycle, and detects possible misbehavior.

6.2 System Model

In this section, we provide brief background on Wi-Fi and describe the duty cycled LTE-

U model. We then formally define channel access time fairness and present our fairness

monitoring architecture.

6.2.1 Wi-Fi Basics

The Wi-Fi standard [31] employs CSMA/CA that implements the Distributed Coordination

Function (DCF) – a distributed slotted medium access scheme with an exponential back-off.

In DCF, each node attempting to transmit must ensure the medium has been idle for a

DIFS (DCF Interframe Spacing) period (i.e., 34µs). Then it selects a back-off (BO) counter

uniformly at random from [0, CW − 1], where CW is the contention window with an initial

value of CWmin. Each failed transmission doubles CW , up to CWmax, and each successful

transmission resets CW to CWmin. After a DIFS idle period, the counter is reduced by

one every BO slot (i.e., 9µs), if no other transmissions are detected during the countdown.

Otherwise, the counter is frozen until the medium is once again idle for a DIFS period.
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Each Wi-Fi node performs Clear Channel Assessment (CCA) to determine if medium is

idle or busy. It has two functions:

• Carrier sense (CS): The ability to detect the preamble of a valid Wi-Fi transmission

at a signal level equal to or greater than −82dBm/20MHz.

• Energy detection (ED): The ability to detect the energy of non-Wi-Fi transmissions (or

Wi-Fi transmissions with missed preamble) at a signal level equal to or greater than

−62dBm/20MHz.

A typical CSMA/CA access cycle is shown in Figure 6.1. When a packet is successfully

received, the intended receiver will transmit an acknowledgement (ACK) after a SIFS (Short

Interframe Space) period (i.e., 16µs).

Busy Medium
DIFS

Backoff slots

Contention 
Window

PHY Frame
SIFS

PHY Frame

DATA ACK

CCA BUSY CCA IDLE CCA 
IDLE

CCA BUSY CCA BUSY

Figure 6.1: Typical CSMA/CA access cycle.

6.2.2 Duty Cycled LTE-U

Figure 6.2 illustrates the duty cycling behavior of a LTE-U AP as in CSAT [37]. It operates

in the shared channel with a period of T (ms), ranging from 10s to 100s of ms (typical

values are 80ms and 160ms, or as large as 640ms [37]). In each cycle, it transmits (i.e.,

ON) for a fraction of time α ∈ (0, 1), i.e., duty cycle, and stays OFF in the remaining time.
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To protect Wi-Fi flush delay-sensitive data, frequent idle gaps (of few msec) are introduced

in ON duration [37] such that the maximum continuous ON duration is no greater than a

limit (e.g., 20ms) [38]. We assume that the minimum continuous ON time is larger than the

maximum transmission time of Wi-Fi packets.

Time

80ms ON 
(and gaps)

OFF

eNB Tx
Power

20ms2ms Idle gap 
(considered as OFF)

OFF

Cycle (of period T=160ms)

Figure 6.2: Example of duty cycled LTE-U with a cycle of 160ms and a duty cycle of 0.5

(i.e., 80/80ms ON/OFF). Idle gaps are introduced every 20ms ON duration.

6.2.3 Fairness in Channel Access Time

In this work, we are interested in fair sharing of channel access time between one LTE-U cell2

and one Wi-Fi network that share one 20MHz channel. We assume that Wi-Fi nodes are

interfered by the LTE-U AP (i.e., received LTE-U interference at each Wi-Fi node exceeds

the CCA-ED threshold), and they are within each other’s CS range. It is important to note

that multiple Wi-Fi networks that are overlapping or in close range can be considered as a

single larger network if we assume that no hidden nodes exist3. In this case, Wi-Fi nodes

2When multiple LTE-U cells are present, they may coordinate and transmit in different portions of the
same cycle. For instance, with two LTE-U cells A and B, A only transmits in the first half of the cycle,
while B only transmits in the second half. If so, LTE-U cells can be monitored separately.

3The impact of hidden Wi-Fi nodes is deterred for future work.
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will sense LTE-U interference and deter their transmissions until LTE-U ON time is over;

during OFF time, they will contend for the next transmission opportunity.

Given a cycle of period T , define ONi as the i-th continuous ON duration, where 1 ≤

i ≤ n. According to the coexistence specifications proposed by the LTE-U Forum [38], it is

required that the duty cycle be less than or equal to a limit αmax, i.e.,

α =
1

T

n∑
i=1

ONi ≤ αmax ∈ (0, 1). (6.1)

For instance, if a LTE-U cell is coexisting with a Wi-Fi network, αmax may be set to 50%;

with two Wi-Fi networks, αmax may be set to 33% instead.

LTE-U AP

Interference region 
of LTE-U AP

Client

Client

Spectrum Manager

Selected 
Wi-Fi AP 

(1) (2)

Figure 6.3: Co-channel deployment of a LTE-U cell and a Wi-Fi network. (1) The spectrum

manager determines a reasonable duty cycle limit for the LTE-U AP. (2) Then it gathers

PHY layer observations from a nearby Wi-Fi AP, so as to estimate the duty cycle of the

LTE-U AP and detect any misbehavior.
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6.2.4 Fairness Monitoring

In shared bands (e.g., TVWS and CBRS bands), there exists a spectrum manager that

manages infrastructure-based LTE-U and Wi-Fi networks (Figure 6.3). Every AP is required

to first register with the spectrum manager and obtain permission to operate. Moreover, they

need to follow any instructions (like power/channel assignments) from the spectrum manager.

Therefore, it is natural to propose fairness monitoring as part of the spectrum manager’s

extended functionality and responsibility.

The fairness monitoring procedure is as follows. First, the spectrum manager assigns a

reasonable duty cycle limit to a LTE-U AP based on the current channel usage, which would

serve as input to the duty cycle adaptation algorithm. Then the spectrum manager collects

information from a local Wi-Fi AP for duty cycle estimation without interrupting its normal

network operations. If it is decided that the LTE-U AP is misbehaving (i.e., violating the

rule in Eq. (6.1)), it will be punished accordingly (e.g., temporary suspension)4.

We assume that the selected Wi-Fi AP can be configured to always physically senses

the medium (regardless of RTS/CTS messages sent by other nodes), and it tries to receive

every Wi-Fi packet during the monitoring process. We also assume that it reports requested

information honestly; robust duty cycle estimation against possible misreporting is left as

future work. The start time and period of LTE-U cycles are honestly reported by LTE-U APs

to the spectrum manager, since they have no incentives to misreport. But the actual duty

cycle in each cycle is not reported due to signaling overhead, or can be easily misreported to

avoid punishment.

6.3 Duty Cycle Estimation and Misbehavir Detection

In this section, we discuss the information collected by the selected Wi-Fi AP, and present

our duty cycle estimation and misbehavior detection schemes.

4Designing an appropriate punishment scheme is out of the scope of this paper and left as future work.
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6.3.1 PHY Layer Observations

We first discuss what a Wi-Fi AP (as the observer node) that is interfered by the target LTE-

U AP would observe at the PHY layer. As shown in Figure 6.1, normal Wi-Fi operations are

characterized by frequent idle periods (e.g., SIFS, DIFS and BO periods), which can only

be seen during LTE-U OFF time. On the other hand, ON time will cause the observer node

to detect busy medium for duration longer than any normal Wi-Fi packets. By physically

sensing the medium, the observer node can easily observe idle/busy periods, which will be

useful for duty cycle estimation.

Now let us take a closer look at the PHY layer state machine of the observer node. For

duty cycle estimation, we are mainly interested in four PHY states: IDLE, CCA BUSY,

TX BUSY and RX BUSY, as shown in Figure 6.4. Transitions between the four states are

triggered by medium busy/idle events as well as Tx/Rx events, and indicated by primitives

that are already available at the MAC layer as per the Wi-Fi standard.

PHY_TXSTART.confirm

PHY_TXEND.confirm &&
PHY_CCA.indication(IDLE)

IDLE CCA_
BUSYPHY_CCA.indication(IDLE)

PHY_CCA.indication(BUSY)

PHY_TXEND.confirm &&
PHY_CCA.indication(BUSY)TX_BUSY

RX_BUSY PHY_RXSTART.indication
PHY_RXEND.indication &&
PHY_CCA.indication(IDLE) 

PHY_CCA.indication(IDLE)
PHY_CCA.indication(BUSY)

PHY_RXEND.indication &&
PHY_CCA.indication(BUSY)

Figure 6.4: Wi-Fi PHY layer state machine. Transitions in dashed arrows are mainly caused

by LTE-U transmissions.

Consider an observer node in IDLE. When it starts transmission, the PHY TXSTART.confirm
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primitive is issued, and it enters TX BUSY; the end of transmission is indicated by PHY TXEND.confirm.

If other node transmits, the medium will become busy, and the PHY CCA.indication(BUSY)

primitive will be issued. The observer node will go to CCA BUSY, looking for valid Wi-Fi

preambles. If a valid Wi-Fi preamble and header are received, PHY RXSTART.indication

is issued, and the observer node goes to RX BUSY. It stays there till the end of predicted

duration (indicated by PHY RXEND.indication). If the preamble or header is missed, it stays

in CCA BUSY for a period equal to the Wi-Fi packet transmission duration. Under normal

conditions, the observer node is expected to return to IDLE after transmission or reception

of a Wi-Fi packet. Note that it is possible that two Wi-Fi packets collide, and the node

(i.e., the observer node) transmitting a shorter packet detects busy medium (CCA BUSY)

immediately after transmission (TX BUSY). But this rare case can be ignored safely.

Since a LTE-U AP may transmit anytime without notifying Wi-Fi nodes, the PHY layer

state machine is impacted in the following way. If ON time starts when the medium is idle,

the observer node will immediately transit from IDLE to CCA BUSY, and stay there till the

end of ON time, since no Wi-Fi preamble or header will be received. If ON time starts during

TX BUSY or RX BUSY, the observer node operates as usual, since it cannot immediately

detect the presence of LTE signals. But it enters CCA BUSY instead of IDLE after Tx/Rx

is over, since ON time is longer than a Wi-Fi packet.

As we can see, the observer node can indeed observe idle (I) and busy (B) periods

that appear alternately very easily, as well as Tx/Rx duration, by keeping track of related

primitives available at the MAC layer. Although the time spent in the three busy states (i.e.,

CCA BUSY, TX BUSY and RX BUSY) is counted towards busy periods, a busy period will

be labeled differently with Btx or Brx, if TX BUSY or RX BUSY is visited.

In practice, when a Wi-Fi AP receives a monitoring request from the spectrum manager, it

starts recording observed busy periods for the requested time window chronologically. Let the

i-th observed busy period be (ti, labeli, di, d
′
i), where ti is the start time, labeli ∈ {B,Btx,Brx}

is the label, di is the duration of that busy period, and d′i is the time spent in TX BUSY

or RX BUSY, if labeli = Btx or Brx (otherwise 0). Note that in each busy period, either
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TX BUSY or RX BUSY may be visited at most once, since it is not possible for a Wi-Fi

node to transit directly from TX BUSY to RX BUSY (or vice versa) without visiting IDLE.

Finally, this Wi-Fi AP reports observed busy periods to the spectrum manager for duty cycle

estimation.

6.3.2 Duty Cycle Estimation

Since the spectrum manager knows the start time and period of LTE-U cycles, it can focus

on duty cycle estimation for each individual cycle of period T . Although a busy period may

be caused by either Wi-Fi or LTE-U transmissions, an abnormal busy period with duration

that is much longer than a Wi-Fi packet must contain a continuous LTE-U ON period. In

fact, it may also contain a portion of a Wi-Fi packet (Figure 6.5), due to LTE-U/Wi-Fi

collision.

ONON

Observed abnormal busy period with duration 𝑑" > 𝐿%&'

PHY Frame

ON

Time0 𝐿

𝑋"
𝑂𝑁"

𝐿+,

…

Figure 6.5: In addition to a continuous LTE-U ON period, an abnormal busy period may

contain a portion of a Wi-Fi packet due to collision.

Denote the set of abnormal busy periods in a cycle as S ′ = {(ti, labeli, di, d′i) : labeli ∈

{B,Btx,Brx}, di > Lmax}, where |S ′| = m and Lmax is the maximum transmission duration
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of Wi-Fi packets. For convenience, elements in S ′ are relabeled from 1 to m. As men-

tioned earlier, LTE-U ON time may or may not overlap with an ongoing Wi-Fi transmission

(Fig. 6.5). If the LTE-U AP starts transmission before any Wi-Fi node transmits during an

idle period, the observer node will sense the medium to be busy and back off. In this case,

the observed abnormal busy period contains only CCA BUSY duration5, which is equal to

the ON duration. In other words, we have ONi = di, if labeli = B.

However, if ON time starts during an ongoing Wi-Fi transmission, then the observed

abnormal busy period includes a portion of the Wi-Fi packet at the beginning, followed by

an ON period. There exist two cases here. In the first case, the observer node is currently

transmitting a packet of duration L. In the second case, the observer node has detected a

valid Wi-Fi preamble and header (of length LPH), and is currently receiving the payload

of predicted duration (L − LPH) (which can be inferred from the LENGTH field in the

header). In both cases, it will stay in TX BUSY or RX BUSY for duration L before going

to CCA BUSY.

Denote the portion of the Wi-Fi packet that is not overlapping with the ON period as

Xi. We can see that

ONi = di −Xi,

where Xi ∈ [0, L] if labeli = Btx, and Xi ∈ [LPH , L] if labeli = Brx. Due to lack of information

about Xi, we model it as a uniform random variable when labeli is Btx or Brx. Then we have

ONi ∼


di, if labeli = B

Unif [di − L, di], if labeli = Btx

Unif [di − L, di − LPH ], if labeli = Brx,

where L = d′ in our model. It is reasonable to assume that {Xi} are independent of each

5Note that it is possible that the ON period overlaps with the Wi-Fi preamble and header, or with two
Wi-Fi packets that happen to collide, in which case RX BUSY is not visited, and the observer node stays
in CCA BUSY. In the first case, we still have ONi ≈ di, since the Wi-Fi preamble and header length (in
10s of µs) is much smaller than the ON period (in 10s of ms). We intentionally ignore the second case,
since the probability is small (especially when RTS/CTS is enabled).
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other. The spectrum manager adopts the following estimator for ONi,

ÔN i =


di, if labeli = B

di − 1
2
d′i, if labeli = Btx

di − 1
2
(d′i + LPH), if labeli = Brx

,

and E[ÔN i] = ONi, which means that ÔN i is an unbiased estimator. The spectrum manager

estimates the duty cycle α̂ as follows,

α̂ =
1

T

m∑
i=1

ÔN i,

which is also an unbiased estimator, since E[α̂] = α.

Note that although in practical LTE systems, one subframe of 1ms duration is usually the

minimum time unit for resource allocation, we do not make this assumption, and stay with

the general case. Nevertheless, such knowledge can potentially increase estimation accuracy,

and our logic is still applicable to this special case.

6.3.3 Misbehavior Detection

After obtaining α̂, the spectrum manager needs to determine whether the LTE-U AP violates

the rule in Eq. (6.1). The detection scheme is as follows,

Result =

Violated, if α̂ > (1 + γ)αmax

Not violated, Otherwise ,

where γ ≥ 0 is a parameter set by the spectrum manager.

Its performance is measured by probability of detection Pd and probability of false alarm

Pfa, i.e.,

Pd(α, γ) = Pr(α̂ > (1 + γ)αmax|α > αmax)

Pfa(α, γ) = Pr(α̂ > (1 + γ)αmax|α ≤ αmax).
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To understand Pd and Pfa, we consider the example in Figure 6.2, in which the LTE-U

AP transmits continuously for ONmax of 20 ms and pauses for a short period of 2 ms, before

transmitting again for another duration equal to (or less than) ONmax. We set αmax to 0.5.

We consider the worst case that each ON period overlaps with a Wi-Fi packet of length Lmax,

and ignore LPH when labeli = Brx for simplicity. Then we have

α̂ =
1

T

m∑
i=1

(
di −

1

2
Lmax

)
=

1

T

m∑
i=1

(
ONi +Xi −

1

2
Lmax

)

= α +
1

T

(
m∑
i=1

Xi −
1

2
mLmax

)
,

where Xi ∈ Unif [0, Lmax] and m = d αT
ONmax

e.

Define X ′i = Xi
Lmax

∈ Unif [0, 1]. Then the sum of m i.i.d. random variables Y =
∑m

i=1X
′
i

follows the Irwin-Hall (or uniform sum) distribution, that is,

FY (y) = Pr(Y ≤ y) =
1

m!

byc∑
k=0

(−1)k
(
m

k

)
(y − k)m, (6.2)

and it has a mean of m
2

and a variance of m
12

. When m is large, the distribution of Y can be

well approximated by a Gaussian distribution N(m
2
, m

12
). But m may be small in our case,

and we will use Eq. (6.2). Then the probability of α̂ > (1 + γ)αmax is given by

Pr {α̂ > (1 + γ)αmax} = Pr{α +
Lmax

T

(
Y − m

2

)
> (1 + γ)αmax}

= 1− FY
(
m

2
+

T

Lmax

[(1 + γ)αmax − α]

)
. (6.3)

Note that if the true duty cycle α is greater than αmax, the probability in Eq. (6.3) is Pd;

otherwise, it becomes Pfa. For instance, with Lmax = 0.5 ms, T = 160 ms and γ = 0 (i.e.,

the black curve in Figure 6.6), if the LTE-U AP transmits with a duty cycle of 0.498, the

probability of mistakenly identifying that AP as misbehaving is 14.0%. If α = 0.502, the

probability of correctly detecting that misbehaving user is 83.4%.

Next we study the impact of γ, Lmax and T on Eq. (6.3). In Figure 6.6, the setting with

Lmax = 0.5 ms, T = 160 ms and γ = 0 is considered as the baseline. When γ is increased
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Figure 6.6: Pd and Pfa as function of α with different values of γ, Lmax and T , where

αmax = 0.5. We observe that increasing λ shifts the curve (in black) to the right (the one

in blue), which implies a trade-off between Pd and Pfa. We also observe that increasing

Lmax adversely affects the detection performance, i.e., reducing Pd and increasing Pfa, while

increasing T can improve the detector performance (for a given true α).

to 0.01, the curve is shifted to the right, which implies smaller Pfa for any α ≤ αmax but

also smaller Pd for any α > αmax. Hence, it implies a tradeoff between Pd and Pfa when

adjusting γ.

Then we increase Lmax to 1.0 ms while keeping other parameters the same with the

baseline. We can see an increase in Pfa and a decrease in Pd, which means that larger Wi-Fi

packets will adversely impact the detection performance of the proposed scheme. In contrast,

when T is increased to 320 ms, the overall detection performance is better, i.e., smaller Pfa

and larger Pd.
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6.4 Evaluation

In this section, we evaluate the proposed duty cycle estimation and misbehavior detection

schemes.

6.4.1 Simulation Setup

We implement and evaluate the proposed schemes in ns3 [136], a widely used network sim-

ulator. We consider the coc-channel coexistence of a LTE-U cell and a Wi-Fi network that

consists of an AP and 20 clients, all of which are located close to each other. Simulation

parameters are provided in Table 6.1.

Each Wi-Fi node has a full outgoing buffer of 1000-byte UDP packets. By adjusting the

A-MSDU threshold (for all Wi-Fi nodes), variable maximum transmission duration of Wi-Fi

(data) packets is obtained. An adaptive but idealized, feed-back Wi-Fi rate control is used,

where adjustments are made immediately upon feedback from the peer. PHY layer state

information is obtained by tracing the PHY state machine of the Wi-Fi AP.

Table 6.1: Simulation parameters

Parameter Value

Wi-Fi standard 802.11n (Mixed Format)

Channel 20 MHz (5170-5190 MHz)

Wi-Fi AP/client Tx power 24/18 dBm

CCA-CS/ED threshold -82/-62 dBm

Traffic model Full buffer UDP

RTS/CTS Disabled

Frame aggregation A-MSDU enabled

Min./max. continuous ON period 6/20 ms [38]

Idle gaps between ON periods 2 ms

LTE-U cycle period (T ) 80-480 ms

Max. Wi-Fi packet duration (Lmax) 300-1100 µs

Max. duty cycle (αmax) 0.5
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Since LTE-U performance (e.g., throughput) is not our concern in this work, we imple-

ment the LTE-U AP as a non-communicating device that switches on or off. We consider the

typical duty cycling pattern in Figure 6.2, in which the LTE-U AP transmits continuously

for 20 ms and pauses for 2 ms before transmitting for another 20 ms (or less) [37]. Although

the transmission duration a Wi-Fi packet can be up to 3ms, it makes little sense for Wi-Fi

data packets to be much larger than 1ms when coexisting with LTE-U, since the idle gap is

only 2ms. Consistent with [38], we set αmax to 0.5.

6.4.2 Duty Cycle Estimation

In this experiment, we evaluate the proposed duty cycle estimation scheme. We first set

α = 0.5, Lmax ≈ 1100 µs, and vary T from 80 ms to 480 ms. Each experiment is repeated

100 times for each setting, and results are shown in Figure 6.7(a). As we can see, the median

of α̂ is very close to α for different T values. As T increases, the deviation of α̂ is smaller,

and the estimation is more accurate. In all cases, α̂ is within ±1% of α.

Then we fix T to 160 µs and vary Lmax from 300 µs to 1100 µs. Results from 100

experiments are shown in Figure 6.7(b). We observe that α̂ is less accurate as Lmax increases,

but α̂ is still within ±1% of the true duty cycle. In practice, smaller Wi-Fi packets would

help estimate α more accurately, but could potentially decrease Wi-Fi throughput due to

PHY and MAC overhead.

6.4.3 Detection Performance

In this experiment, we evaluate the proposed misbehavior detection scheme in terms of Pd

and Pfa with different choices of γ values. We consider a typical cycle period of 160 ms [37],

and set αmax to 0.5, Lmax to 1100 ms. The true α is varied from 0.49 and 0.52. For each α

value, the experiment is repeated 200 times. Results are shown in Figure 6.8.

As we can see, with γ = 0, Pfa is as high as 45% when α = 0.5, which is undesirable in

practice. By setting γ to 0.01 or 0.014, the spectrum manager can keep Pfa under 5% or

1%, but it also leads to a smaller Pd for each α > αmax. If the LTE-U AP transmits with
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Figure 6.7: Box plot of estimated duty cycle. (a) Impact of T (Lmax = 1100 µs). (b) Impact

of Lmax (T = 160 µs). We observe that a larger cycle period and a smaller packet length can

improve the estimation performance and α̂ is within ±1% of α in all cases.

a duty cycle higher than 0.514, that is, 2.8% deviation from αmax, the proposed detection

scheme with γ = 0.014 can detect such misbehavior with a probability higher than 95% while

keeping Pfa less than or equal to 1%.

6.5 Discussion

In this section, we discuss the current status of the LTE-U forum and limitations of this

work.

6.5.1 Current Status of LTE-U Forum

LTE-U was proposed in 2013 by Qualcomm and Ericsson and relies on 3GPP Release 10-12

functionality, with specifications defined by the LTE-U Forum, an organization established



149

0.49 0.495 0.5 0.505 0.51 0.515 0.52

α

0.01
0.05

0.2

0.4

0.6

0.8

0.95
1

P
f
a
or

P
d

γ=0

γ=0.01

γ=0.014

Pfa (α ≤ αmax) Pd (α > αmax)

Figure 6.8: Performance of detecting duty cycling misbehavior with different γ values, where

αmax = 0.5. Note that γ = 0 is the baseline (in black curve), and the other two γ values are

chosen such that Pfa is less than 5% (in dashed blue curve) and 1% (in dashed pink curve).

by Verizon in collaboration with Alcatel-Lucent, Ericsson, LG Electronics, Qualcomm Tech-

nologies, Inc., and the Sumsung. Since the proposal of LTE-U, it has been considered as a

threat by the Wi-Fi and cable industries in unlicensed spectrum. In late February of 2017,

Verizon and T-Mobile announced plans to deploy LTE-U after the FCC certified the first

LTE-U devices in the 5 GHz band [139], and T-Mobile launched LTE-U service in six cities

in June [140]. But later in November 2017, Verizon confirmed shift to LTE-LAA over LTE-

U [141]. As of now, the LTE-U Forum seems to have been disbanded, and interest in LTE-U

mainly comes from the academia.



150

6.5.2 Limitations

There are several limitations of this work. First, we assumed that the PHY layer observations

are available at a Wi-Fi node, but such PHY layer information from hardware chip may not

be exposed in practice. As an alternative, passive spectrum sensors can be deployed that

measure the medium occupancy based on energy detection.

Second, we made an asymmetric assumption that all Wi-Fi nodes are honest in reporting

the requested information, which may not hold in practice. If the spectrum manager deploys

sensors to monitor LTE-U activities, then the proposed scheme would still work. On the

other hand, if the spectrum manager collects data from Wi-Fi nodes via crowdsensing, it is

more reasonable to assume that the majority of Wi-Fi nodes are honest, if not all, and the

current scheme needs to extended to allow the spectrum manager to cross-validate the duty

cycles estimated from measurements provided by different nodes.

Third, if multiple LTE-U networks are present and coordinated to transmit at different

time portions, the proposed scheme would work by associating observed LTE-U ON periods

with different LTE-U networks. If multiple LTE-U networks do transmit asynchronously,

they are likely to be located with a distance from each other (or otherwise there will be

significant interference and throughput degradation). In this case, the spectrum manager

may collect measurements from multiple spatially distributed Wi-Fi nodes and identify any

Wi-Fi AP that experiences interference from a single LTE-U AP.

6.6 Conclusion

In this paper, we proposed a scheme that allows the spectrum manager to estimate LTE-U

duty cycle via a local Wi-Fi AP. We further proposed a scheme to detect possible misbehav-

ior, and analyzed its performance in terms of detection and false alarm probabilities. We

implemented and evaluated the proposed schemes in ns3. Our results have shown that the

proposed schemes are able to estimate LTE-U duty cycle accurately and detect misbehavior

with a high detection probability and a low false alarm probability.
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[14] M. López-Beńıtez, A. Umbert, and F. Casadevall, “Evaluation of spectrum occupancy
in spain for cognitive radio applications,” in Vehicular technology conference, 2009.
VTC Spring 2009. IEEE 69th. IEEE, 2009, pp. 1–5.

[15] X. Ying, J. Zhang, L. Yan, G. Zhang, M. Chen, and R. Chandra, “Exploring indoor
white spaces in metropolises,” in Proceedings of the 19th Annual International Con-
ference on Mobile Computing & Networking, ser. MobiCom ’13. ACM, 2013, pp.
255–266.

[16] X. Ying, J. Zhang, L. Yan, Y. Chen, G. Zhang, M. Chen, and R. Chandra, “Exploring
indoor white spaces in metropolises,” ACM Trans. Intell. Syst. Technol., vol. 9, no. 1,
pp. 9:1–9:25, August 2017.

[17] F. Hessar and S. Roy, “Capacity considerations for secondary networks in TV white
space,” IEEE Transactions on Mobile Computing, vol. 14, no. 9, pp. 1780–1793, 2015.

[18] X. Ying, F. Hessar, and S. Roy, “Indoor–outdoor TV white and gray space availability:
A U.S. case study,” in TV White Space Communications and Networks. Elsevier, 2018,
pp. 47–71.

[19] Federal Communications Commission, “In the matter of unlicensed operation in the
TV broadcast bands: Second report and order and memorandum opinion and order,”
no. ET Docket No. 04-186, No. 02-380, Nov 4, 2008.

[20] J. R. Agre and K. D. Gordon, “A summary of recent federal government activities to
promote spectrum sharing,” no. IDA Paper P-5186, September 2015.

[21] U.S. Department of Commerce, “Sixth interim progress report on the ten-year plan
and timetable,” June 2016.

[22] Federal Communications Commission, “In the matter of amendment of the commis-
sion’s rules with regard to commercial operations in the 1695- 1710 MHz, 1755-1780



153

MHz, and 2155-2180 MHz bands: Report and order,” no. GN Docket No. 13-185,
March 31, 2014.

[23] ——, “In the matter of amendment of the commission’s rules to provide spectrum for
the operation of medical body area networks: Order on reconsideration and second
report and order,” no. ET Docket No. 08-59, August 21, 2014.

[24] ——, “In the matter of revision of part 15 of the commission’s rules to permit unlicensed
national information infrastructure (u-nii) devices in the 5 GHz band: First report and
order,” no. ET Docket No. 13-49, April 1, 2014.

[25] ——, “In the matter of amendment of the commission’s rules with regard to commercial
operations in the 3550-3650 MHz band: Report and order and second further notice
of proposed rulemaking,” no. GN Docket No. 12-354, April 21, 2015.

[26] ——, “OET bulletin No. 69, Longley-Rice methodology for evaluating TV coverage
and interference,” 2004.

[27] C. Phillips, D. Sicker, and D. Grunwald, “A survey of wireless path loss prediction
and coverage mapping methods,” IEEE Communications Surveys & Tutorials, vol. 15,
no. 1, pp. 255–270, 2013.

[28] ——, “Bounding the error of path loss models,” in New Frontiers in Dynamic Spectrum
Access Networks (DySPAN), 2011 IEEE Symposium on. IEEE, 2011, pp. 71–82.

[29] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6, pp. 1–4, 2006.

[30] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and future chal-
lenges,” IEEE Communications Magazine, vol. 49, no. 11, 2011.

[31] “Part 11 : Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications,” IEEE Std 802.11-2012, Tech. Rep.

[32] 3GPP, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures (3GPP TS 36.213 version 13.1.1 Release 13),” ETSI TS 136 213 V13.1.1,
2016.

[33] S. Sagari, S. Baysting, D. Saha, I. Seskar, W. Trappe, and D. Raychaudhuri, “Co-
ordinated dynamic spectrum management of LTE-U and Wi-Fi networks,” in Dy-
namic Spectrum Access Networks (DySPAN), 2015 IEEE International Symposium
on. IEEE, 2015, pp. 209–220.



154

[34] A. M. Voicu, L. Simić, and M. Petrova, “Inter-technology coexistence in a spectrum
commons: A case study of Wi-Fi and LTE in the 5-ghz unlicensed band,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 11, pp. 3062–3077, 2016.

[35] A. M. Cavalcante, E. Almeida, R. D. Vieira, F. Chaves, R. C. Paiva, F. Abinader,
S. Choudhury, E. Tuomaala, and K. Doppler, “Performance evaluation of LTE and
Wi-Fi coexistence in unlicensed bands,” in Vehicular Technology Conference (VTC
Spring), 2013 IEEE 77th. IEEE, 2013, pp. 1–6.

[36] F. M. Abinader, E. P. Almeida, F. S. Chaves, A. M. Cavalcante, R. D. Vieira, R. C.
Paiva, A. M. Sobrinho, S. Choudhury, E. Tuomaala, K. Doppler et al., “Enabling the
coexistence of LTE and Wi-Fi in unlicensed bands,” IEEE Communications Magazine,
vol. 52, no. 11, pp. 54–61, 2014.

[37] “LTE-U technology and coexistence,” Qualcomm Technologies, Inc., Tech. Rep., May
2015.

[38] “LTE-U SDL coexistence specifications v1.3,” LTE-U Forum, Tech. Rep., Oct 2015.

[39] A. K. Sadek et al., “Extending LTE to unlicensed band-merit and coexistence,” in
Communication Workshop (ICCW), 2015 IEEE International Conference on. IEEE,
2015, pp. 2344–2349.

[40] E. Almeida et al., “Enabling LTE/WiFi coexistence by LTE blank subframe alloca-
tion,” in Communications (ICC), 2013 IEEE International Conference on. IEEE,
2013, pp. 5083–5088.
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[115] M. M. Halldórsson, “Approximations of weighted independent set and hereditary sub-
set problems,” Journal of Graph Algorithms and Applications, 2000.

[116] S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maxi-
mum weighted independent set problem,” Discrete Applied Mathematics, vol. 126, no.
2-3, pp. 313–322, 2003.

[117] A. Kako, T. Ono, T. Hirata, and M. M. Halldórsson, “Approximation algorithms for
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[137] T. Nihtilä, V. Tykhomyrov, O. Alanen, M. A. Uusitalo, A. Sorri, M. Moisio, S. Iraji,
R. Ratasuk, and N. Mangalvedhe, “System performance of LTE and IEEE 802.11
coexisting on a shared frequency band,” in Wireless Communications and Networking
Conference (WCNC), 2013 IEEE. IEEE, 2013, pp. 1038–1043.

[138] C. Cano and D. J. Leith, “Coexistence of WiFi and LTE in unlicensed bands: A pro-
portional fair allocation scheme,” in Communication Workshop (ICCW), 2015 IEEE
International Conference on. IEEE, 2015, pp. 2288–2293.

[139] FierceWireless, “Verizon, T-Mobile gear up to launch LTE-U after FCC
authorizes devices in 5 GHz band,” https://www.fiercewireless.com/tech/
verizon-t-mobile-gear-up-to-launch-lte-u-after-fcc-authorizes-devices-5-ghz-band.

[140] Engadget, “T-Mobile launches speedy LTE-U service in six cities,” https://www.
engadget.com/2017/06/26/t-mobile-launches-unlicensed-lte/.

[141] Mobile World Live, “Verizon confirms shift to LAA over LTE-
U,” https://www.mobileworldlive.com/featured-content/top-three/
verizon-confirms-shift-to-laa-over-lte-u/.

[142] X. Ying, R. Poovendran, and S. Roy, “Fairness monitoring between Wi-Fi and duty
cycled LTE-U in shared bands,” IEEE Transactions on Vehicular Technology (In prepa-
ration).

[143] X. Ying, M. Buddhikot, and S. Roy, “SAS-assisted coexistence-aware dynamic channel
allocation for 3.5 GHz shared spectrum,” IEEE Transactions on Wireless Communi-
cations (Under review).

https://www.fiercewireless.com/tech/verizon-t-mobile-gear-up-to-launch-lte-u-after-fcc-authorizes-devices-5-ghz-band
https://www.fiercewireless.com/tech/verizon-t-mobile-gear-up-to-launch-lte-u-after-fcc-authorizes-devices-5-ghz-band
https://www.engadget.com/2017/06/26/t-mobile-launches-unlicensed-lte/
https://www.engadget.com/2017/06/26/t-mobile-launches-unlicensed-lte/
https://www.mobileworldlive.com/featured-content/top-three/verizon-confirms-shift-to-laa-over-lte-u/
https://www.mobileworldlive.com/featured-content/top-three/verizon-confirms-shift-to-laa-over-lte-u/


164

[144] X. Ying, S. Roy, and R. Poovendran, “Pricing mechanisms for crowd-sensed spatial-
statistics-based radio mapping,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 2, pp. 242–254, June 2017.

[145] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran, “Cloaking the
clock: Emulating clock skew in controller area networks,” in Proceedings of the 9th
ACM/IEEE International Conference on Cyber-Physical Systems, ser. ICCPS ’18.
IEEE Press, 2018, pp. 32–42.

[146] X. Ying, R. Poovendran, and S. Roy, “Detecting LTE-U duty cycling misbehavior for
fair sharing with Wi-Fi in shared bands,” in 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Oct
2017, pp. 1–7.

[147] X. Ying, M. M. Buddhikot, and S. Roy, “Coexistence-aware dynamic channel allocation
for 3.5 ghz shared spectrum systems,” in 2017 IEEE International Symposium on
Dynamic Spectrum Access Networks (DySPAN), March 2017, pp. 1–2.

[148] X. Ying, S. Roy, and R. Poovendran, “Pricing mechanism for quality-based radio map-
ping via crowdsourcing,” in 2016 IEEE Global Communications Conference (GLOBE-
COM), Dec 2016, pp. 1–6.



165

Appendix A

LIST OF PUBLICATIONS

Journal Publications & Book Chapter

1. X. Ying, R. Poovendran, and S. Roy, “Fairness monitoring between Wi-Fi and duty

cycled LTE-U in shared bands,” IEEE Transactions on Vehicular Technology (In prepa-

ration).

2. X. Ying, M. Buddhikot, and S. Roy, “SAS-assisted coexistence-aware dynamic channel

allocation for 3.5 GHz shared spectrum,” IEEE Transactions on Wireless Communi-

cations (Under review).

3. X. Ying, F. Hessar, and S. Roy, “Indoor–outdoor TV white and gray space availability:

A U.S. case study,” in TV White Space Communications and Networks. Elsevier, 2018,

pp. 47–71.

4. X. Ying, J. Zhang, L. Yan, Y. Chen, G. Zhang, M. Chen, and R. Chandra, “Exploring

indoor white spaces in metropolises,” ACM Trans. Intell. Syst. Technol., vol. 9, no.

1, pp. 9:1–9:25, August 2017.

5. X. Ying, S. Roy, and R. Poovendran, “Pricing mechanisms for crowd-sensed spatial-

statistics-based radio mapping,” IEEE Transactions on Cognitive Communications and

Networking, vol. 3, no. 2, pp. 242–254, June 2017.

Conference Publications

1. S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran, “Cloaking the

clock: Emulating clock skew in controller area networks,” in Proceedings of the 9th



166

ACM/IEEE International Conference on Cyber-Physical Systems, ser. ICCPS’18.

IEEE, 2018, pp. 32–42.

2. X. Ying, R. Poovendran, and S. Roy, “Detecting LTE-U duty cycling misbehavior for

fair sharing with Wi-Fi in shared bands,” in 2017 IEEE 28th Annual International

Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Oct

2017, pp. 1–7.

3. X. Ying, M. M. Buddhikot, and S. Roy, “Coexistence-aware dynamic channel allocation

for 3.5 GHz shared spectrum systems,” in 2017 IEEE International Symposium on

Dynamic Spectrum Access Networks (DySPAN), March 2017, pp. 1–2.

4. X. Ying, S. Roy, and R. Poovendran, “Pricing mechanism for quality-based radio map-

ping via crowdsourcing,” in 2016 IEEE Global Communications Conference (GLOBE-

COM), Dec 2016, pp. 1–6.

5. X. Ying, S. Roy, and R. Poovendran, “Incentivizing crowdsourcing for radio environ-

ment mapping with statistical interpolation,” in Dynamic Spectrum Access Networks

(DySPAN), 2015 IEEE International Symposium on. IEEE, 2015, pp. 365–374.

6. X. Ying, C. W. Kim, and S. Roy, “Revisiting tv coverage estimation with measurement-

based statistical interpolation,” in Communication Systems and Networks (COM-

SNETS), 2015 7th International Conference on. IEEE, 2015, pp. 1–8.

7. X. Ying, J. Zhang, L. Yan, G. Zhang, M. Chen, and R. Chandra, “Exploring indoor

white spaces in metropolises,” in Proceedings of the 19th Annual International Confer-

ence on Mobile Computing & Networking, ser. MobiCom’13. ACM, 2013, pp. 255–266.



167

VITA

Xuhang Ying was born in Ninghai, Zhejiang Province, People’s Republic of China, 1991.

He received his Bachelor of Engineering in Information Engineering from the Chinese Uni-

versity of Hong Kong, Hong Kong in 2013 with the highest honor. He received his Master

of Science in Electrical Engineering from University of Washington in 2016. His research in-

terests include spectrum sharing, incentive mechanism, and platform security for in-vehicle

controller area networks and GPS systems. He was a co-author of the ACM/IEEE ICCPS

Best Paper finalist (2018).


	List of Figures
	Glossary
	Introduction
	Contributions of this Thesis
	Organization of this Thesis

	Spatial-Statistics-Based Radio Mapping For TV Coverage Estimation
	Related Work
	Spatial Interpolation – Kriging
	Measurement Campaign
	RSSI Estimation
	Boundary Estimation
	Conclusion and Future Work

	Auction-Based Crowdsensing for Spatial-Statistics-Based Radio Mapping
	Related Work
	Preliminaries
	System Model
	Incentive Mechanism Design
	Performance Evaluation
	Conclusion and Future Work

	Pricing-Based Crowdsensing for Spatial-Statistics-Based Radio Mapping
	Related Work
	A Two-User Tutorial Example
	Preliminaries and Our Model
	Pricing Mechanism
	Evaluation
	Conclusion and Future Work

	SAS-Assisted Coexistence-Aware Dynamic Channel Assignment
	Related Work
	Channel Assignment in CBRS
	Novel Conflict Graphs and Problem Formulation
	Proposed Algorithms
	Evaluation
	Conclusion and Future Work
	Appendix

	Monitoring Channel Access Time Fairness for Wi-Fi/LTE-U Coexistence
	Related Work
	System Model
	Duty Cycle Estimation and Misbehavir Detection
	Evaluation
	Discussion
	Conclusion

	Bibliography
	List of Publications

