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Abstract—White Space Networking crucially relies on the
active monitoring of spectrum usage (to identify white space
opportunities) in both space and time. One way to achieve this
is wide-area deployment of spectrum sensors to gather spatio-
temporal spectrum data, and use them to construct better Radio
Environment Maps (REMs) via suitable statistical interpolation
techniques (i.e., Kriging). Cost of such large-scale sensor de-
ployment can be reduced via crowdsourcing, i.e., outsourcing the
sensing task to mobile users equipped with sensorized high-end
client devices (e.g., tablets or smartphones), and success of such
crowdsourced sensing presumes some incentive mechanisms to at-
tract user participation. In this work, we present an incentivized
crowdsourcing system architecture that (periodically) acquires
spectrum data from users, so as to optimize the resulting radio
environment map (i.e., minimizing the average prediction-error
variance) for a given data acquisition budget. First, we introduce
an auction-based incentive mechanism that is computationally
efficient, individually rational and truthful, and prove that the
total payment of the proposed mechanism is a monotonically
increasing function of the cardinality of the winner set. Then we
propose a budget-feasible version and through extensive simula-
tions, we evaluate the performance of proposed mechanisms for
comparison to a baseline to demonstrate its significantly superior
performance in crowdsourced radio mapping.

Index Terms—Incentive Mechanism, Crowdsourcing, Radio
Environment Mapping, Statistical Interpolation, Kriging.

I. INTRODUCTION

The exponential growth of high-end client mobile devices
translates to a proportionate surge in a need for network capac-
ity, and consequently, additional spectrum. However, within
today’s static spectrum allocation policy regime, an over-
whelming portion of the licensed spectrum is already allocated
(primarily to government users). A succession of spectrum
utilization studies worldwide have demonstrated that spectrum
is often grossly underutilized by licensed (primary) users.
To improve spectrum utilization, the concept of Dynamic
Spectrum Access based on Cognitive Radio (CR) technology
has been proposed, which allows unlicensed (secondary) users
to opportunistically access, on a temporal basis, locally idle
spectrum1 subject to the no-harmful-interference-to-primary-
user constraint as specified by the Federal Communication
Commission (FCC) [1].

White Space Networking is fundamentally based on real-
time spectrum usage monitoring and the ability to identify
white spaces in space and time. Predictive radio propagation

This work was supported in part by NSF AST award 1443923 under the
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1Such Cognitive usage is often termed as White Space Networks as
shorthand.

modeling - which primarily takes transmitter parameters (e.g.,
transmission power, location, antenna pattern) - is often a
useful starting point to (pre)-compute the received signal
strength (RSS) at any receiver location and build a radio
map database [1]. Due to its efficiency and scalability, such
modeling - widely used in academia - has also been adopted
by FCC for unlicensed access in TV bands [1]. However,
since empirical models do not count for finer-grained local
environment details (e.g., trees or buildings), RSS predictions
tend to be locally inaccurate in many circumstances such as
urban areas. Moreover, such modeling captures largely spatial
variations of spectrum usage, but not temporal variations in
cases where the primary transmitters are dynamic.

Clearly, the above implies the need for wide-area spectrum
sensing via (either static or dynamic) sensors that are able to
provide more accurate local spatio-temporal RSS data, which
can be used to construct better REMs [2]–[4]. Such spectrum
measurement infrastructure samples the (unknown) RSS map
at different locations at a time instant and applies model-based
statistical interpolation techniques (e.g., Kriging) to estimate
RSS values at unmeasured locations. From this perspective,
the REM construction is a spatial sampling problem, where
sample locations can be carefully selected to achieve desired
estimation (REM accuracy) performance under a certain sam-
pling budget (e.g., labor and time).

A core question is how and where to deploy sensors over a
desired region for REM creation to capture spatial or temporal
variations. Without any a-priori information about the RSS
field, the obvious baseline is to deploy static sensors uniformly
at random (with density subject to cost constraints) over
the region of interest. However, scaling such deployments
inevitably meets cost limitations. Hence, the preferred solution
is to exploit crowdsourcing [5], namely, outsourcing wide-area
sensing to spatially distributed users with mobile devices that
are outfitted with spectrum sensors. Recently, this approach
has gained a growing attention from the research community.
As an example, in [6], authors designed low-cost spectrum
sensing hardware for crowdsourcing. In [7], security issues
resulting from falsification of crowdsourced sensing data were
investigated. Recently, crowdsourcing-enabled spectrum pro-
filing was formulated as a sensing task allocation problem [8],
so as to maximize the collective utility of the sensing data.

Prior works on crowdsourced spectrum sensing implicitly
assume voluntary participation of cognitive or secondary users.
However, since users have to contribute their own resources
(e.g., computing power, storage and battery) for sensing, they
would expect some form of compensation for their partici-



pation. On the other hand, the platform (offeror) may also
have a budget that limits the total payment to users. In this
paper, we focus on the design of truthful and budget-feasible
incentive mechanisms for crowdsourced radio mapping with
the Kriging-based REM estimation approach, given a budget
constraint for the offeror. Since the REM estimation is inher-
ently a spatial sampling problem, sample locations need to
be chosen in a manner that minimizes the average prediction-
error variance. Similar to [9]–[11], we consider the problem of
incentivized crowdsourcing for radio mapping within a reverse
auction framework, where multiple users want to sell their
location-specific spectrum data to the platform. Each user has
a privately known cost and receives a payment when selected.
We assume that users are self-interested and want to maximize
their own utility. As a result, they tend to take strategic actions
and ask for higher prices (called bids) than their true costs.
Hence, we are interested in designing a truthful mechanism
that motivates users to reveal their true costs via their bids
and is also budget-feasible.

Our primary contributions are as follows:
• First, we design a crowdsourcing system that periodically

acquires spectrum data from users to construct REMs
with statistical interpolation under a budget constraint.

• Second, we propose an auction-based budget-free mech-
anism with a cardinality constraint (i.e., the maximum
number of selected users), and show that it is truthful as
well as computationally efficient and individually ratio-
nal. On top of it, we propose a budget-feasible mechanism
by translating the budget constraint to the best cardinality
constraint using the bisection method.

• Finally, we conduct extensive simulations to evaluate
the performance of the proposed mechanism, and com-
pare it against the state-of-art budget-feasible mechanism
proposed in [11]. Our results reveal that the proposed
mechanism makes full use of the budget, and performs
significantly better compared to the baseline, with an im-
provement of 18%-22% in terms of maximizing average
prediction-error variance reduction.

The remaining of this paper is organized as follows. A
review of related work is provided in Section II, and pre-
liminaries are given in Section III. In Sections IV and V, we
describe our system and present our mechanism, respectively.
Simulation results are given in Section VI, while we provide
our conclusion is in Section VII.

II. RELATED WORK

In crowdsourcing, users are typically assumed to be self-
interested and tend to take strategic actions. Therefore, it is
desirable to design a truthful mechanism that motivates users
to tell their true costs. In [9], authors proposed an auction-
based truthful mechanism for a scenario where sensing tasks
have predetermined location tags and values, and users are
only allowed to compete for tasks within their own coverage
regions. However, values of collected data did not depend
on user locations and the budget was not imposed as a
hard constraint in addition to truthfulness. In [12] and [13],
similar geometric coverage models for tasks and users were
considered, which do not fit into our radio mapping scenario.

Instead, we consider a general task without location tags and
all users are allowed to compete for it. Based on user locations,
the spatial sampling approach is taken to select users.

In [10], [11], authors proposed truthful and budget-feasible
incentive mechanisms for general submodular monotone func-
tions. Their mechanisms adopt the proportional share alloca-
tion rule, and winner selection stops when the bid of next user
exceeds a proportional share of its contribution. Although this
rule provides an upper bound on the actual payment, which
ensures budget-feasibility, the bound may be loose and thus
the mechanism creates budget surplus. In our mechanism, we
adopt the bisection method to make full use of the budget.

III. PRELIMINARIES

A. Statistical Interpolation - Kriging
Kriging [14] is a well-known geo-statistical interpolation

technique, originally developed for mining and has been
adapted to radio mapping [2]–[4]. For radio mapping, Kriging
employs a Gaussian random field model for RSS at a point x

Z(x) = µ(x) + δ(x) (1)

where µ(x) is the mean and δ(x) the residual at location x. The
former captures path loss and shadowing at different locations,
and the later represents possible sampling errors.

A fundamental function in this engine is the semivariogram
γ(·), which models the variance between two points as a
function of their distance. In practice, γ(·) is estimated from
measurements and then fitted with parametric models such as
spherical and exponential models. In Ordinary Kriging (OK),
Z(x) is assumed to be intrinsically stationary, that is,

E[Z(x)] = µ(x) = µ

E[(Z(x1)− Z(x2))2] = 2γ(h) (2)

where µ is an unknown constant and h = ||x1 − x2||. The
relationship between γ(h) and the covariance function C(h)
is given by C(h) = C(0) − γ(h). In this paper, we focus on
OK due to its popularity2.

Given a set of measurements A at locations x1, x2, ..., xn,
the predicted value at an unmeasured point x0 is

Ẑ(x0) =

n∑
i=1

ωi · Z(xi) (3)

where {ωi} are normalized weights, i.e.,
∑n
i=1 ωi = 1. Thus,

Kriging produces a linear unbiased estimator. Minimization
of the Mean Squared Error (MSE) E[(Ẑ(x0) − Z(x0))2]
with respect to {ωi} under the normalization constraint leads
straightforwardly to a set of linear equations (aka Kriging sys-
tem). The optimal coefficients are given by ω∗ = (ω∗i )i∈A =
Σ−1
AAΣAx0 , where ΣAA is the covariance matrix, and ΣAx0 is

the vector of cross-covariances between {Z(xi)} and Z(x0).
The minimized MSE (also the Kriging variance (K-var) since
the estimator is unbiased) is given by

σ2
x0|A = σ2

x0
− ΣTAx0

(Σ−1
AA)TΣAx0

(4)

2A generalized technique called Universal Kriging relieves the constant-
mean assumption. In practice, it is common to first estimate and subtract
µ(x) from Z(x), which makes δ(x) an intrinsically stationary process with
a constant (zero) mean and OK may be applied.



where σ2
x0

is the K-var when A = ∅3. K-var represents the
prediction uncertainty at the unmeasured location and is often
used as the estimator design metric (smaller K-Var implies
better REM estimator).

B. Spatial Sampling Design
A classic spatial sampling problem discussed in [16] is

the following. Consider a set of candidate sample locations
C and a set of unmeasured locations D, which are often a grid
discretization of a continuous region. The task is to choose a
subset A ⊆ C up to k elements that minimizes the average
K-var over D, or equivalently, maximizes the average K-var
reduction4 φ(A), which is given by

φ(A) =
1

|D|
∑
x0∈D

(
σ2
x0
− σ2

x0|A

)
(5)

Since the problem maxA⊆C,|A|≤k φ(A) is NP-hard in gen-
eral [18], computing the optimal solution is difficult. How-
ever, by exploiting structural properties of φ(A) such as
submodularity and monotonicity [18], [19] with respect to the
cardinality of A, an approximate solution could be obtained
with greedy algorithms.

Formally, a set function f : 2C → R is called submodular,
if f(A∪{x})−f(A) ≥ f(B∪{x})−f(B) for any A ⊆ B ⊆ C
and any x ∈ C \B. The notion of submodularity describes the
diminishing returns behavior: adding a new element increases
f more, if there are fewer elements so far, and less, if there
are more elements. A set function f : 2C → R is said to be
monotone, if f(A) ≤ f(B) for any A ⊆ B ⊆ C. In fact, φ(A)
is also non-negative. It is well-known that for a submodular,
monotone and non-negative function, a greedy algorithm finds
an approximate solution guaranteed to be within 1 − 1/e of
the optimal solution, and no polynomial-time algorithm can
achieve a better guarantee unless P = NP [20].

C. Myerson’s Characterization Theorem
In mechanism design, truthfulness means that it is a dom-

inant strategy for users to report their true costs regardless
of other users’ bids [21]. Denote the cost, bid and payment
of user i as ci, bi and pi, respectively. A mechanism M
consists of a selection rule χ : (b,x) → 2[n], and a payment
rule ψ : (b,x) → Rn+, where b and x are the bid and
location vectors respectively. Since the cost is the only private
parameter, the Myerson’s characterization theorem [10], [22],
which specifies the sufficient and necessary conditions for
truthfulness, is very relevant.

Theorem 1 (Myerson’s Characterization). In single parameter
domains, a mechanism M = (χ, ψ) is truthful if and only if:

3Strictly speaking, σ2
x0

is undefined according to Eq. 4 when |A| = 0;
when |A| = 1, it depends on both C(0) and µ, which is unknown. Due to
this reason, GeoR [15], the widely-used geo-statistics library in R, requires at
least two data points for Kriging. In our implementation, when A = ∅ (no
data points in the interested region), we bypass the issue by introducing two
data points that are very far away from the target region; for |A| = 1, we
simply add a second data point very close to the existing one.

4An alternative metric is the mutual information [17]. Since the two criteria
share very similar properties such as submodularity and monotonicity, we
focus on the average K-var reduction in this work. However, our discussion
also extends to the mutual information criterion.

1) χ is monotone: ∀i ∈ Ω, if b′i ≤ bi then i ∈ χ(bi, b−i,x)
implies i ∈ χ(b′i, b−i,x) for any given b−i. That is, a
winner keeps winning if it unilaterally decreases his bid.

2) ψ pays winners the threshold amounts: pi = sup{bi : i ∈
χ(bi, b−i,x)} for any given b−i 5. That is, the payment
is the maximum bid that still wins.

A simple example is the single-good second-price (reverse)
auction with private costs [21], where the user with the lowest
bid is the only winner (selection rule), who is paid the second
lowest bid (payment rule). We may verify its truthfulness
with Myerson’s characterization. First, the selection rule is
monotone, that is, the winner still wins if it submits an even
lower bid. Second, the winner is paid the threshold amount:
if it submits a bid higher than the second lowest bid, it is no
longer the winner. Hence, the second-price auction is truthful.

IV. SYSTEM MODEL

Fig. 1 illustrates our crowdsourcing system for radio map-
ping, which consists of a centralized server called platform,
and CR equipped users, who are spatially distributed and
connected to the platform. We assume that each user knows its
current geo-location with high accuracy and is able to collect
high-quality6 spectrum data.

The platform seeks to acquire sensing data from users
periodically for the spectrum band of interest. At the begin-
ning of a period, the platform announces a sensing request
without specific location tags, which contains detailed sensing
instructions (such as center frequency, sampling rate etc.).
Each user i in the desired region D can compete for the task,
and incurs a privately known cost ci > 0 for sensing. We
assume no entry or other overhead costs, that is, a user does
not incur a fee to bid nor does it pay to communicate with
the platform. User i submits its location xi and a bid bi ≥ ci,
the minimum payment it is willing to accept. Denote the set
of bidders as Ω = {1, 2, ..., n} at locations {x1, x2, ..., xn},
where n ≥ 2 and xi ∈ D. Upon receiving a bid-location profile
(b,x) where b = (b1, b2, ..., bn) and x = (x1, x2, ..., xn), the
platform selects a winner subset A ⊆ Ω and determines the
payment pi > 0 for each winner i ∈ A (pi = 0 for i /∈ A).
Finally, it collects sensing data from winners.

We assume that users are rational and make decisions in
their best interest. Each user i has a utility of pi−ci if selected,
and 0 otherwise. We are interested in the strategic case, where
each user wants to maximize its own utility by taking strate-
gic actions, for example, submitting a bid (possibly) much
higher than its true cost. In addition, we assume that users
are non-collaborative and honest in following the protocol.

5b−i = (bj)j 6=i, j∈Ω are other users’ bids.
6Data quality depends on various factors in practice such as noise power

and local environment (e.g., indoor/outdoor). In this paper, we assume that
CR devices (or antennas) are located outdoors, whose noise power are low
enough to reliably sense the presence of primary signals in bands of interest.
For instance, if a user wants to compete for sensing tasks in TV bands, its
CR device should be able to sense as low as the service threshold of -84
dBm over a 6-MHz channel for full-power digital TV [1]. To enforce this
assumption, the platform may ask users to report their noise levels and local
environments, and only allow qualified users to compete for a particular task.
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Fig. 1: Incentivized crowdsourcing system for radio mapping.

Considerations of security and privacy enhancement within
this framework is left as future work.

The platform aims to maximize φ(A)7 for a given budget
B. We assume that γ(h) or C(h) is already estimated a-priori
and thus known to the platform for the current period. The
platform’s task is to design a mechanism M = (χ, ψ) with
the following desirable properties:

• Computational efficiency: selection and payment rules
can be computed in polynomial time8.

• Individual rationality: each participating user will have
a non-negative utility, i.e., pi ≥ bi for i ∈ A.

• Budget feasibility: the total amount of payments does
not exceed a given budget, i.e.,

∑
i∈A pi ≤ B.

• Truthfulness: it is a dominant strategy for users to report
their true costs regardless of other users’ bids.

The first three properties characterize a feasible crowd-
sourcing system in a real world environment while the final
property counteracts the possibility of market manipulation
and strategizing.

V. INCENTIVE MECHANISM DESIGN

Similar to [10], [11], Theorem 1 is exploited to design a
truthful mechanism. We first consider an auction-based budget-
free mechanism with a cardinality constraint, and then propose
a budget-feasible version that enforces the budget constraint
by translating it to an appropriately modified cardinality
constraint. Finally, we show that the proposed mechanism is
computationally efficient, individually rational, budget feasible
and truthful, and illustrate it with an example.

A. Budget-Free Mechanism with a Cardinality Constraint

In the budget-free case, the platform takes a bid-location
profile (b,x) and a cardinality constraint k, and tries to solve

7The criterion of “average” K-var reduction implicitly assumes equally
important subregions with the same accuracy requirement. In practice, ac-
curacy requirement may vary over subregions, and those that require greater
interpolation accuracy will need more samples in general. To achieve this goal,
our proposed framework can be readily extended in the following two ways.
First, the platform may assign larger budgets to more important subregions
and smaller budgets to others, given the same budget in total.

Alternatively, the platform may adopt a “weighted" criterion and assign
more weights to unmeasured locations from subregions that require greater
accuracy. By doing so, the platform tends to select more samples from those
subregions in the processing of maximizing the “weighted” phi(A).

8The computational complexity is evaluated in terms of the number of calls
to φ(A), which can be computed in polynomial time.

the following problem:

max
A⊆Ω

φ(A)

subject to |A| ≤ k (6)

Since both individual rationality and truthfulness will be
enforced in payment determination using Theorem 1, they are
not imposed as explicit constraints. It would seem that the
above is the classical spatial sampling problem, and a greedy
algorithm that only considers user locations and iteratively
selects users with the maximum marginal contribution is the
solution. However, since the above selection rule does not
depend on users’ bids, a winner can submit an arbitrarily high
bid and still win. Thus, to ensure truthfulness, we need to
consider location and bid jointly for winner selection. Similar
to [10], [11], we use the normalized marginal contribution
(i.e., marginal contribution divided by their bids) as the metric,
which yields a monotone selection rule, as we will show later.

Algorithm 1 describes the budget-free mechanism. As we
can see, the selection rule (Lines 4-7) is based on the
greedy heuristic that selects winners one by one iteratively
according to their normalized marginal contribution until k
winners are selected. Consider n users in Ω, labeled from
1 to n. In the j-th iteration, the current set of (j − 1)
winners is denoted by Aj−1, where j ≥ 1 and A0 = ∅.
The marginal contribution of each user i ∈ Ω \ Aj−1 is
given by: mAj−1

(i) = φ(Aj−1 ∪ {i}) − φ(Aj−1). Define

[j] = arg maxi∈Ω\Aj−1

mAj−1
(i)

bi
, which is the index of the j-

th winner over Ω. To simplify notation, we write m[j] instead
of mAj−1

([j]). Note that φ(Aj) =
∑
i≤jm[i] for all j ≤ k.

The submodularity of φ(A) implies that

m[1] ≥ m[2] ≥ ... ≥ m[k] (7)

and the selection order implies that
m[1]

b[1]
≥
m[2]

b[2]
≥ ... ≥

m[k]

b[k]
(8)

We now show that Eq. (8) is true by contradiction. Consider
winners [i] and [j], where i < j. Suppose that m[i]

b[i]
<

m[j]

b[j]
.

Denote the marginal contribution of the j-th winner in the
i-th iteration as m′[j]. In the presence of submodularity, we
have m′[j] = mAi−1

([j]) ≥ m[j] = mAj−1
([j]), since

Ai−1 ⊆ Aj−1. Thus, it holds that m[i]

b[i]
<

m[j]

b[j]
≤ m′[j]

b[j]
. In other

words, the j-th winner would have been selected earlier in the
i-th iteration, which is a contradiction with our assumption.
Therefore, Eq. (8) is true.

Next comes the payment determination. The key is to find
the maximum bid each winner can submit that allows it to win.
The corresponding pseudo-codes are in Lines 10-18. Consider
the i-th winner among Ω, denoted as [i]. Define a new set
Ω′ = Ω \ {[i]}. Similar to Eq. (8), sort users in Ω′ according
to their normalized marginal contribution. Denote the first
(j − 1) winners among Ω′ as A′j−1, and the index of the
j-th winner as [j]′. In order for winner [i] to replace winner
[j]′, its normalized marginal contribution needs to be larger
than that of winner [j]′, i.e.,

mA′j−1
([j]′)

b[j]′
<
mA′j−1

([i])

b[i]
(9)



So the maximum bid (or the conditional threshold payment)
for winner [i] that allows it to replace winner [j]′ is

p[i],[j]′ =
mA′j−1

([i])

mA′j−1
([j]′)

· b[j]′ (10)

Note that as long as winner [i] is ahead of any winner [j]′ ∈
Ω′ in terms of ordering, where j ≤ k, it is guaranteed that the
i-th winner still wins. Therefore, the maximum bid (i.e., the
threshold payment) for the i-th winner is

p[i] = max
1≤j≤k

{p[i],[j]′}, i = 1, 2, ..., k (11)

Algorithm 1: budget_free_mechanism(b,x, k)
input : b,x, k
output: A – selected subset, p – payment vector

1 Ω← {1, 2, ..., n} // Or Ω← {x1, x2, ..., xn}
2 // Selection Rule
3 A ← ∅, U ← Ω;
4 while U 6= ∅ and |A| < k do
5 j ← arg maxi∈U (φ(A ∪ {i})− φ(A)) /bi;
6 A ← A∪ {j}, U ← U \ {j}
7 // Payment Rule
8 foreach i ∈ Ω do pi ← 0;
9 foreach i ∈ A do

10 Ω′ ← Ω \ {i};
11 A′ ← ∅, U ← Ω′;
12 while U 6= ∅ and |A′| < k do
13 j ← arg maxl∈U (φ(A′ ∪ {l})− φ(A′)) /bl;
14 m′j ← φ(A′ ∪ {j})− φ(A′);
15 m̃i ← φ(A′ ∪ {i})− φ(A′);
16 pi ← max{pi, m̃i

m′j
· bj};

17 A′ ← A′ ∪ {j}, U ← U \ {j};

18 return (A,p);

B. Budget-Feasible Mechanism

We now consider the budget constraint. Denote the problem
in Eq. (6) and the corresponding winner set as H(b,x, k) and
Ak respectively. The total payment is Ptotal(k) =

∑
i∈Ak

pi,
which is a function of k. Then the budget-feasible version
aims to solve the following problem:

max
k

H(b,x, k)

subject to Ptotal(k) ≤ B (12)

Suppose that k1 < k2 and denote the corresponding winner
sets as A(1) and A(2). It is easy to see that A(1) ⊂ A(2)

because both adopt the same selection rule. Since φ(A) is a
monotonically increasing function, larger k results in larger
φ(A). Thus, Eq. (12) is equivalent to maximizing k such
that Ptotal(k) ≤ B. One simple way is to enumerate every
k value in order until the total payment exceeds the budget.
Alternatively, the bisection method may be used to speed up
the search process by leveraging the fact that Ptotal(k) is a
monotonically increasing function of k.

Lemma 1. The total payment of the budget-free mechanism
is a monotonically increasing function of k.

Proof: Suppose k1 < k2. Let the outputs of the
budget-free mechanism given k1 and k2 be (A(1),p(1)) and
(A(2),p(2)) respectively. As in Eq. (8), we sort users according
to their normalized marginal contribution, and denote the i-
th winner as [i]. Then, we have A(1) = {[1], [2], ..., [k1]} ⊂
A(2) = {[1], [2], ..., [k2]}. Denote the payments as {p(1)

[i] : i =

1, 2, ..., k1} and {p(2)
[i] : i = 1, 2, ..., k2}. For any i ≤ k1, it

holds that

p
(2)
[i] = max{ max

1≤j≤k1
p[i],[j]′ , max

k1<j≤k2
p[i],[j]′} (13)

= max{p(1)
[i] , max

k1<j≤k2
p[i],[j]′} ≥ p

(1)
[i]

For any i ∈ (k1, k2], p(2)
[i] > 0. Thus,

∑
1≤i≤k2 p

(2)
[i] >∑

1≤i≤k1 p
(1)
[i] .

The budget-feasible mechanism is described in Algorithm 2.
The bisection method requires a lower bound l for k such
that the budget constraint can be met, and an upper bound
u such that the budget constraint cannot be met. A tolerance
value ε is also needed as the stopping condition. We assume
that the budget is neither too small nor too large, so that the
winning set contains at least one sample but not all samples
are affordable. Thus, let l = 1, u = n and ε = 1 as in Line 1.
Then, in the while loop (Lines 2-10), the midpoint between u
and l is fed to the budget-free mechanism to check the budget
constraint: if yes, the midpoint becomes the new lower bound,
and the new upper bound otherwise. The number of calls to
the budget-free mechanism is log2((u− l)/ε) ≈ log2(n).

Algorithm 2: budget_feasible_mechanism(b,x, B)
input : b,x, B
output: A – selected subset, p – payment vector

1 l← 1, u← n, ε← 1;
2 while u− l > ε do
3 k ← b(u− l)/2c;
4 (A′,p′)← budget_free_mechanism(b,x, k);
5 Ptotal ←

∑
i∈A′ p

′
i;

6 if Ptotal ≤ B then
7 l← k;
8 A ← A′, p← p′;
9 else

10 u← k

11 return (A,p);

C. Analysis

Now we prove the computational efficiency, individual
rationality and truthfulness of the proposed budget-feasible
mechanism.

Lemma 2. The proposed budget-feasible mechanism is com-
putationally efficient (i.e., in polynomial time).



Proof: For the budget-free mechanism, the complexity of
the greedy selection is O(k · n), since finding the user with
maximum normalized marginal contribution takes O(n) time
and we need to find k such users. In payment determination,
the greedy process is executed repeatedly to determine each
winner’s payment. So the complexity is O(k2 · n) for the
budget-free mechanism. Since k is bounded by n, the overall
complexity for a general k is bounded by O(n3).

Since the budget-feasible mechanism adopts the bisec-
tion method which requires log2(n) calls to the budget-free
mechanism in the worst case, the complexity then becomes
O(n3 log2 n), which is polynomial-time.

Lemma 3. The proposed budget-feasible mechanism is indi-
vidually rational.

Proof: Since p[i] ≥ p[i],[j]′ for i = 1, 2, ..., k, it suffices
to prove that p[i],[j]′ ≥ b[i] for some j. Observe that the first
(i− 1) winners over Ω are the same with those over Ω′, i.e.,
A′i−1 = Ai−1. Due to the absence of winner [i] in Ω′, some
other user now becomes winner [i]′, who ranks behind winner
[i] in the original set when it is present, that is,

mAi−1([i]′)

b[i]′
≤
mAi−1([i])

b[i]

⇒
mA′i−1

([i]′)

b[i]′
≤
mA′i−1

([i])

b[i]
(Since A′i−1 = Ai−1)

⇒ p[i],[i]′ =
mA′i−1

([i])

mA′i−1
([i]′)

· b[i]′ ≥ b[i] (14)

Hence, it holds that p[i] ≥ p[i],[i]′ ≥ b[i] for i = 1, 2, ..., k.

Lemma 4. The proposed budget-feasible mechanism is truth-
ful.

Proof: First, we prove that the selection rule is mono-
tone. Consider the i-th winner, denoted as [i]. If winner [i]
announces b′[i] < b[i], it holds that m[i]

b′
[i]

>
m[i]

b[i]
≥ m[k]

b[k]
and

winner [i] still wins. In other words, bidding a smaller value
cannot push winner [i] backwards in the sorting. Hence, the
selection rule is monotone.

Then, we prove that the payments are threshold amounts.
Assume that winner [i] announces a bid b[i] > p[i]. By
definition, we know that b[i] > p[i],[j]′ for all 1 ≤ j ≤ k
and b[i] > p[i],[k]′ in particular. It means that when winner
[i] bids this amount, it will not be placed ahead of the k-th
winner, even if it is included in the sorting again. Thus, winner
[i] cannot win by bidding b[i] > p[i], and p[i] the threshold
payment to winner [i].

By invoking Theorem 1, it holds that the proposed budget-
feasible mechanism is truthful.

The above lemmas prove the following theorem.

Theorem 2. The proposed budget-feasible mechanism is com-
putationally efficient, individually rational and truthful.

D. An Example
For illustration of the proposed algorithm, we consider a

simple example shown in Fig. 2. The square presents the

region of interest for radio mapping, which is discretized into
a grid of 9 locations of interest. There are four interested
users located at x1, x2, x3, x4, who are labeled as 1, 2, 3 and
4. Suppose that they bid 0.1, 0.2, 0.3, 0.4, respectively and the
budget is 0.5. The semivariogram γ(h) is a spherical model,
given by γ(h) = a+ (s− a)

(
3
2 (hr )− 1

2 (hr )3
)

for 0 ≤ h ≤ r,
and γ(h) = s for h > r, where a = 0, s = 5 and r = 3.
Values of φ(A) are given in Table I.

A φ(A) A φ(A)
∅ 0 {2, 3} 6.38

{1} 4.34 {2, 4} 5.99
{2} 4.29 {3, 4} 5.23
{3} 4.29 {1, 2, 3} 7.03
{4} 4.55 {1, 2, 4} 6.89

{1, 2} 6.00 {1, 3, 4} 6.54
{1, 3} 6.04 {2, 3, 4} 6.55
{1, 4} 6.22 {1, 2, 3, 4} 7.20

TABLE I: Evaluated φ(A) for any A ⊆ {1, 2, 3, 4}.

We first demonstrate how the budget-free mechanism works.
Observe that the greedy selection order by the normalized
marginal contribution is given by: 1 → 2 → 3 → 4. The
process of computing threshold payments for a single and two
winners (i.e., k = 1 and 2) is given as follows.

For k = 1, we have [1] = 1 (the only winner is 1):

• In the absence of [1], the only winner is [1]′ = 2

A′0 = ∅, p[1],[1]′ =
mA′0

([1])

mA′0
([1]′) · b[1]′ =

4.34
4.29
· 0.2 ≈ 0.202

p[1] = p[1],[1]′ = 0.202;
• Hence, the payment to the only winner is 0.202.

For k = 2, we have [1] = 1 and [2] = 2:
• In the absence of [1], winners are [1]′ = 2 and [2]′ = 3.

1) A′0 = ∅, p[1],[1]′ =
mA′0

([1])

mA′0
([1]′) · b[1]′ =

m∅(1)

m∅(2)
· b2 =

4.34
4.29
· 0.2 ≈ 0.202;

2) A′1 = {[1]′} = {2}, p[1],[2]′ =
mA′1

([1])

mA′1
([2]′) · b[2]′ =

m{2}(1)

m{2}(3)
· b3 = 6.00−4.29

6.38−4.29
· 0.3 ≈ 0.245;

3) p[1] = max{p[1],[1]′ , p[1],[2]′} = 0.245;

• In the absence of [2], winners are [1]′ = 1 and [2]′ = 3.

1) A′0 = ∅, p[2],[1]′ =
mA′0

([2])

mA′0
([1]′) · b[1]′ =

m∅(2)

m∅(1)
· b1 =

4.29
4.34
· 0.1 ≈ 0.099;

2) A′1 = {[1]′} = {1}, p[2],[2]′ =
mA′1

([2])

mA′1
([2]′) · b[2]′ =

m{1}(2)

m{1}(3)
· b3 = 6.00−4.34

6.04−4.34
· 0.3 ≈ 0.293;

3) p[2] = max{p[2],[1]′ , p[2],[2]′} = 0.293;

• Hence, the payments to winners [1] = 1 and [2] = 2 are
0.245 and 0.293 respectively, and the total is 0.538.

Now we consider the budget-feasible mechanism. The bi-
section method is first initialized with l = 1 and u = 4. Then it
checks the budget feasibility when k = b(4 + 1)/2c = 2, and
realizes that the budget constraint cannot be met (as shown
above). So it sets u = 2. Now since the gap between the
lower and upper bounds is within the tolerance (i.e., ε = 1),
the mechanism returns the result when k = l, which is a
budget-feasible solution.
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Fig. 2: Topology of the example with user locations and
locations to be interpolated. The K-var reduction is averaged
over the 9 locations of interest to obtain φ(A).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of proposed
mechanisms and compare them against the baseline mech-
anism in [11]. For convenience, we use the abbreviations
BFreeMech and BFeaMech for the budget-free and budget-
feasible mechanisms respectively.

A. Baseline Mechanism

In [11], authors proposed a randomized budget-feasible
mechanism for general submodular monotone functions, which
is computationally efficient, individually rational and truthful.

There are two main differences between their mechanism
and ours. First, their mechanism is randomized: with a certain
probability (i.e., 0.4), it returns a single user with the max-
imum marginal contribution (unnormalized) and pays it B;
otherwise, it runs a greedy scheme which select multiple users
and determines payments based on Myerson’s characterization.
The logic behind the randomness is the following. In some
extreme cases, there exists some user with very large marginal
contribution and very high cost. As a result, it will never be
selected by a greedy algorithm, which yields unbounded per-
formance. Hence, authors adopted the randomized approach
in order to derive a certain performance bound.

Second, in their greedy scheme, the budget constraint is
enforced through the proportional share allocation condition.
Specifically, the greedy scheme selects the user with largest
normalized marginal contribution in the j-th iteration only if
b[j] ≤ B

2

m[j]∑
i∈Aj−1∪{[j]}

mi
, and stops otherwise. This condition

ensures that the final payment to winner [i] in the winner set
Ak is bounded above by m[i]

φ(Ak) · B; then the total payment

will be bounded by B since
∑

i≤km[i]

φ(Ak) ·B = B.
Since it is very unlikely that two or more samples would

lead to lower φ(A) than a single sample in radio mapping, we
only consider their greedy scheme as the baseline mechanism.

B. Simulation Setup

A sample topology with 100 users is given in Fig. 3,
whose locations are randomly generated from the spatial

−4 −2 0 2 4

−
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−
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y
 (
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 k

m
)

Fig. 3: Sample topology. There are 100 randomly distributed
users (in blue dots) over the 10km-by-10km region. The region
of interest is the inner red square, which is discretized into a
total of 121 locations (in black dots).

Poisson random process within a 10km-by-10km region. The
actual region of interest is the 8km-by-8km square, which is
discretized into a grid of 121 locations of interest. This is
because in practice estimation errors tend to be dominated by
the border areas [23] and hence we focus on radio mapping
for the inner region. User costs are i.i.d. random variables
drawn from the uniform distribution over [0, κmax]. Since
the normalized marginal contribution is used as the metric
in our proposed mechanism, the scale of κmax has no impact
on winner selection and payments are proportional to κmax.
Without loss of generality, we set κmax = 1. The semivar-
iogram γ(h) is an exponential model obtained from a real-
world measurement campaign in a suburban area [3], which
is given by γ(h) = a+(s−a)

(
1− e−3h/r

)
, where a = 6.48,

s = 22.02 and r = 2.11. Mechanisms are implemented in R
[24] using the geoR [15] package.

C. Evaluation of BFreeMech

As discussed in Section V, BFeaMech’s budget constraint is
closely related to BFreeMech’s cardinality constraint. Hence,
we are interested in understanding the impact of the cardinality
constraint on Ptotal and φ(A) for BFreeMech. In addition, we
quantify the payment overhead used to ensure truthfulness,
which is the difference between the total payment and the
total amount of bids.

In this simulation, we first generated 30 sets of random costs
and locations for 100 users. In each experiment, a particular
number of users were randomly sampled from the 100 users;
for the same set of users, BFreeMech was executed with
a cardinality constraint varied from 5 to 30. Results were
averaged over 30 experiments and are shown in Fig. 4.

1) Impact of k on Ptotal : There are two observations from
Fig. 4a. First, the average Ptotal is monotonically increasing,
and tends to increase at a faster rate as k increases. This could
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Fig. 4: Impact of the cardinality constraint k on Ptotal and
φ(A). (a) Average Ptotal as a function of k for different
numbers of users. (b) Average φ(A) as a function of k for
different numbers of users.

be explained as follows: in order to select one more winner,
the payment for each existing winner is very likely to increase,
which leads to a larger increase in Ptotal on average.

Second, for a relatively small k (e.g., less than 15) compared
to the number of users n, we do not observe a significant
difference in the average total payment. When k becomes
larger, the average Ptotal tends to be inversely proportional to
the number of participating users. For instance, when k = 25,
the average total payment is 21.0 when there are 40 users,
which is almost halved (i.e., 9.6) with a double number of
users (i.e., 80 users).

2) Impact of k on φ(A): As shown in Fig. 4b, the average
φ(A) increases as k increases, but the increasing rate keeps
decreasing, which is mainly due to the submodularity property
of φ(A). On the other hand, unlike Ptotal, the number of users
has little effect on the average value of φ(A). It implies that
to achieve certain performance, a corresponding number of
samples need to be purchased, and with more participating
users, the total payment will be lower.

3) Impact of k on payment overhead: As mentioned earlier,
the actual payment made to a winner is always higher than
its bid to ensure individual rationality, and more importantly
truthfulness. Thus, for a set A of k winners, we may define
the payment overhead ratio α as below

α =

∑
i∈A pi −

∑
i∈A bi∑

i∈A bi
(15)

As illustrated in Fig. 5, when k is relatively small compared
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Fig. 5: Average payment overhead ratio as a function of k for
different numbers of users.

to n, α varies between 0.9 and 1.2 for different values of n.
In other words, the platform needs to pay roughly double the
total amount of bids to ensure truthfulness. On the other hands,
when k is closer to n (e.g., more than 20 winners out of 40
users), α tends to increase rapidly. It implies that the platform
may need to limit the number of winners depending on the
number of participants, so as to avoid payment overhead.

D. Comparison with Baseline Mechanism

Now we compare the performance of BFeaMech against the
baseline mechanism. For fair comparison, the same set of user
costs and locations was fed to both mechanisms, and results
were averaged over 30 experiments.

1) Impact of Number of Users: Fig. 6 illustrates the impact
of n. We set the budget constraint to be 5. As we can see
in Fig. 6a, the average number of purchased samples tends
to increase linearly as a function of n for both mechanisms,
but the slope of BFeaMech is greater than that of the baseline
mechanism. As a result, BFeaMech performs much better than
the baseline mechanism in terms of average φ(A) for the same
n, with an improvement of 19.1%-21.2% for different numbers
of users, as shown in Fig. 6b.

2) Impact of Budget: Fig. 7 illustrates the impact of B
on the average number of samples and φ(A) for both mech-
anisms. We set the number of users to be 100. As shown
in Fig. 7a, we can observe that the average number of pur-
chased samples increases as B increases for both mechanisms,
but it grows much faster for BFreaMech compared to the
baseline mechanism. The reason is as follows. Suppose that
k winners are selected by the baseline mechanism. It holds
that b[k+1] >

B
2

m[k+1]∑
i∈Ak∪{[k+1]}mi

, or equivalently, m[k+1]

b[k+1]
<

2
∑

i∈Ak∪{[k+1]}mi

B . In order to get the (k + 1)-th winner, the
budget has to increase in a way so that the right-hand side is
less or equal to the left-hand side. If we plot the average budget
as a function of the number of winners k for the baseline
mechanism (Fig. 8), we can see that it tends to increase
exponentially as k increases, and thus the additional budget
needed to get one more winner keeps increasing. Also notice
that the total payment to k winners made by BFreeMech is
much less than the budget required the baseline mechanism.
Since both mechanisms determine payments in a very similar
manner, it implies that the baseline mechanism does not make
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Fig. 6: Impact of number of users n on the performance of
BFeaMech and the baseline mechanism. (a) Average number
of winners or purchased samples as a function of n. (b) Aver-
age φ(A) as a function of n. BFeaMech is able to consistently
achieve an average value of φ(A) 19.1%-21.2% higher than
that of the baseline mechanism for different numbers of users.

full use of the budget, and with a larger the budget, the budget
surplus will also become greater. Therefore, BFreaMech tends
to make better use of the additional budget and is able to
purchase more samples than the baseline mechanism in radio
mapping.

As shown in Fig. 7b, the difference in the number of
purchased samples directly translates to the difference in
φ(A). The average φ(A) of both mechanisms is monotonically
increasing as B increases, but tends to grow at a lower
rate. Moreover, there exists a significant improvement of
BFreaMech, and the average φ(A) is 18.5%-22.3% higher
than the baseline mechanism.

VII. CONCLUSION

In this paper, we designed an incentivized crowdsourc-
ing system that acquires spectrum data periodically from
users. The goal of our system is to maximize the average
Kriging/prediction-error variance reduction φ(A) for a given
budget. We first proposed a computationally efficient, indi-
vidually rational and truthful incentive mechanism with a
cardinality constraint. On top of it, we proposed a budget-
feasible mechanism by translating the budget constraint to a
suitable cardinality constraint with the bisection method.

We performed simulations to evaluate the performance of
the proposed mechanisms, and compare them against a base-
line mechanism. Our results show that the baseline mechanism
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Fig. 7: Impact of budget B on the performance of BFeaMech
and the baseline mechanism. (a) Average number of purchased
samples as a function of B. (b) Average φ(A) as a function
of B. BFeaMech is able to achieve an average φ(A) value
18.5%-22.3% higher than that of the baseline mechanism for
different budgets.
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k for the baseline mechanism and BFreeMech. For the same
number of winners, the average budget required by the base-
line mechanism is higher than the average total payment given
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does not make full use of the budget in radio mapping, and the
proposed mechanism achieves significantly better performance
over the baseline mechanism, with a 18%-22% higher average
φ(A) for different numbers of users and budgets.
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