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Abstract—Per FCC rules, secondary users in TV White
Spaces must operate only within spectrum subject to
a no-harmful-interference condition to existing primary
receivers. In effect, this translates into a protection region
around every TV transmitter, wherein secondary nodes
must not transmit (on the same channel). This is imple-
mented by requiring secondary users to consult a database
prior to any channel access so as to obtain the local
prohibited channels/spatial zones (or equivalently the free
channels or White Spaces). Construction of such protection
regions for a transmitter within a database has been done,
mainly based on empirical propagation models that esti-
mate the received signal strength at a location. Clearly, such
model-based prediction is always of limited accuracy and
should be supplemented by measurement based approaches
that help validate and improve the database predictions. In
this work, we present results based on applying spatial
interpolation techniques (Kriging) to measurement data
obtained in Seattle, WA. Our results have shown that
empirical DBA models tend to over-estimate received signal
strengths by not explicitly accounting for local obstructions,
while measurement-based Kriging achieves consistently
good performance. Furthermore, boundary estimation via
Kriging achieves a type I error rate 46.1% lower than
comparable DBA approach while keeping type II error
rate under a low limit (5%) for a given service threshold
(i.e., -84 dBm/6 MHz); this is also an improvement over a
method using k-Nearest Neighbor for such estimation.

I. INTRODUCTION

The exponential growth of data services such as mo-
bile multimedia on devices like smartphones and tablets
translates to a proportionate surge in a need for addi-
tional network bandwidth. However, within today’s fixed
spectrum allocation policy regime, a large portion of the
licensed spectrum is temporarily unused or underutilized
by licensed (primary) users. To address the need for
improved spectrum utilization and efficiency, a promis-
ing technology called Dynamic Spectrum Access (DSA)
has been proposed, which allows unlicensed (secondary)
users to dynamically access locally unoccupied spectrum
(i.e., so called white spaces (WS)) while subjecting them
to a no-harmful-interference-to-primary-users condition.
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The first potential application of DSA principles was
intended for the VHF/UHF TV bands, concurrent with
the transition from analog-to-digital over the broad-
cast in the U.S. In 2008, the Federal Communication
Commission (FCC) opened up (portions of) unused TV
band spectrum [1]–[3]. Per FCC ruling [2], secondary
users must obtain information regarding locally available
spectrum by contacting a database administrator (DBA)
to retrieve a list of available channels. A core output
of DBA querying is the estimated coverage contours
of primary sources (i.e., TV transmitters) based on
suitable propagation models (notably, the FCC Curves
[1] prescribed by the FCC for all current DBAs1). In
any case, the contour is determined by comparing the
(estimated) signal strength at any location to a preset
threshold (e.g., 41 dBµV/m or −84 dBm for digital TV
services2). Secondary TV band devices are not allowed
to operate (transmit) within this region plus the vicinity
- the so-called “no-talk" zone.

Concerns about local accuracy of such signal strength
estimation based on propagation models include the fact
that these do not account properly for built environments
(e.g. buildings et al) in dense urban outdoors as well as
indoors [6]. As a result, DBAs may not estimate cov-
erage regions accurately, causing possible interference
to primary users or missing WS opportunities. On the
other hand, local spectrum sensing is generally more
accurate, but is expensive and labor-intensive, making
sampling at all locations over a large geographical region
practically infeasible. This leads to a natural proposition
given the respective advantages of both approaches - can
these be effectively combined, namely, by conducting a
small amount of local measurements over fringe areas of
protected regions predicted by DBAs, using statistical
interpolation techniques to estimate signal strengths at

1It is worthwhile noting that coverage prediction based on
Longley-Rice Irregular Terrain Model (ITM) [4] as used in
http://specobs.ee.washington.edu, overcomes several limitations of the
FCC curves.

2This threshold is subject to calculation for DTV stations using the
Longley-Rice methodology based on the receive system model in [1],
[5]. FCC ignores actual waveform information (e.g., ATSC 1.0), which
should be considered as a weakness.978-1-4244-8953-4/11/$26.00 c© 2015 IEEE



unmeasured points, and finally refining protected con-
tours based on interpolation results?

In [7], [8], authors applied well-established geo-
statistical interpolation technique called Kriging to cov-
erage prediction, and showed that it is able to achieve
competitive or better performance as compared to prop-
agation models. While this prior work serves as the
immediate inspiration, they limited themselves to signal
interpolation and did not actually explore the problem
of estimation of the TV coverage regions - which is the
main issue of interest in protecting primary receivers.

In this work, we quantify and compare the perfor-
mance of DBA model-based predictions (serving as a
baseline) with measurement-based approaches that em-
ploy Kriging followed by classification for coverage re-
gion estimation. Towards this end, we conduct a vehicle-
based measurement campaign over a 4.6km x 5km
suburban region in Seattle, WA, to collect I/Q samples
of 31 permissible UHF channels at 240 locations. Our
primary contributions are as follows.
• As a baseline, we first quantify the received signal

strength (RSS) prediction errors of DBA models –
FCC Curves and Longley-Rice (LR) model. Our
results show that these tend to over-estimate true
RSS resulting from omitting man-made or natural
local obstructions (e.g., trees, buildings etc.).

• We further quantify the boundary estimation perfor-
mance in terms of type I/II error rates, using 3 ap-
proaches: a) Kriging on measurement data followed
by estimation, b) Estimation on measurement data
using k-Nearest Neighbor (k-NN) classifier, and c)
Estimation on predicted field strengths using DBA
models. Our result show that for a preset threshold
(i.e., -84 dBm), Kriging reduces type I errors by
46.1% compared to DBA models while keeping
type II error rate under 5%, which is an improve-
ment with respect to the k-NN approach. More
importantly, both measurement driven approaches
performance significantly better than DBA models
that suffer from high type I error rate.

The paper is organized as follows. In Section I-A,
we present a review of recent Kriging applications in
radio mapping. Basic Kriging background is provided in
Section II, and our measurement campaign is described
in Section III. We compare Kriging RSS and boundary
estimation against DBA models in Section IV and V
respectively, and conclude this study in Section VI.

A. Related Work

Radio mapping approaches rest on two broad thematic
pillars - use of analytical propagation models for a-
priori prediction of signal strength complemented by

measurement-driven a-posteriori techniques. The per-
formance of propagation models has been investigated
earlier in literature [9], [10] and more recently, in [6] au-
thors systematically analyzed the accuracy of numerous
propagation models using a large dataset. Data driven
spatial interpolation using statistical methods rests on the
work of Daniel Krige originally developed for mining
applications, and later applied to many other fields such
as soil science, hydrosciences, as well as to wireless
environment mapping [11]–[15].

The comparative use of predictive path loss models
(such as FCC Curves and the LR model) and Kriging
based approaches for signal strength estimation has only
a sparse recent history. In [7], authors compared RSS
estimation performance of the LR model against Ordi-
nary Kriging (OK) for a single TV source; in [8], authors
further analyzed the multi-transmitter scenario, and em-
pirically demonstrated the advantages of Kriging. Unlike
[14], we do not track (slow channel fading) variations
and defer investigation of temporal interpolation to future
work. In this work, we attempt a structurally similar
exercise specifically for mapping of TV channels; we
explore prediction accuracy of FCC curves (mandated
by FCC for DBAs) and the Longley-Rice point-to-point
model in predicting available channels. We also conduct
a measurement campaign in TV bands for a typical sub-
urban region in Seattle, WA of approx. 23 sq. km., and
extend Kriging techniques for boundary estimation - for
comparison against model based predictive techniques.

II. METHOD

The RSS (in dBm) at a point in a region of interest
D ∈ R2 is modeled as a random field Z(x), and any
set of measured RSS values {Z(xi) : i = 1, 2, ..., n} is
a realization of the underlying random process. One of
the popular Kriging techniques, Ordinary Kriging (OK),
models this with a mean field µ and the residual δ(x):

Z(x) = µ+ δ(x),x ∈ D (1)

where µ is an unknown constant. In Radio Mapping,
one may interpret µ as being determined by the path loss
and large-scale fading effects, and δ(·) possible sampling
errors. In OK, Z(x) is further assumed to be intrinsically
stationary, i.e.,

E[Z(x)]− E[Z(x + h)] = 0 (2)

E[(Z(x)− Z(x + h))2] = 2γ(h) (3)

where γ(h) is called the semivariogram, and h the dis-
tance lag between two locations3. Generalized Kriging

3h is a vector with an amplitude and direction. A semivariogram
considering directions is called an anisotropic semivariogram, other-
wise, isotropic. In this paper, we consider isotropic semivarograms,
leaving anisotropy our future work.
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techniques drop this constant-mean assumption by ap-
plying a varying-mean model (e.g., Universal Kriging).
In this work, we report on results using OK (and defer
investigation of other Kriging methods to future work).

A. Semivariogram γ(h)

At the center of geo-statistical analysis lies γ(h), a
function representing the spatial continuity or correlation
of the signal field, i.e., two points closer in space tend to
have more similar RSS values than those farther apart.

1) Constructing empirical semivariogram γ̂(h) for
measured data: In this study, we adopt the Cressie-
Hawkin (C-H) robust estimator [16] given as below:

γ̂(h) =
1

2
·

{
1

N(h)

∑
N(h)(Z(xi) − Z(xj))1/2

}4

(0.457 + 0.494/N(h))
(4)

where Z(xi) and Z(xj) are values at locations xi and
xj , whose distance separation is approximately equal to
h, and N(h) the total number of such pairs. Compared
to the classical estimator used in [12], the C-H estimator
is more robust to atypical observations and outliers [16].

2) Fitting γ̂(h) with parametric models: The next
step is to fit γ̂(h) with parametric γ(h) models, such
as exponential, Gaussian, spherical and cubic models.
For example, the exponential model is defined as:

γ(h) = a+ (s− a)
(

1− e−3h/r
)
, h ≥ 0 (5)

where a (i.e., the nugget) represents the discontinuity
around the origin caused by sampling errors and small-
scale variability, r (i.e., the range) the distance where
the model first flattens out, and s (i.e., the sill) the limit
of γ(h) when h goes to infinity, which measures the
maximum variance between two points that are far apart.
Then the Weighted Least Squares (WLS) is performed
to determine the best parameters for each model, using
the available package in “geoR" [17].

3) Choosing the best fitted model: To find the best
among competing fitted models, we cross-validate each
fitted model with the same training dataset used for γ̂(h)
estimation. A popular cross-validation (CV) technique
called the leave-one-out CV works as follows: each
and every one data point is excluded from the training
dataset, whose value is then predicted by OK with the
proposed model using the remaining data, and compared
with its true value. The one with the smallest mean
squared error (MSE) is selected as the best model.

B. Interpolation

In OK, the predicted value Ẑ(x0) at an unmeasured
location x0 is a linear combination of measured values
at nearby locations {Z(xi) : i = 1, 2, ..., n}, namely,

Ẑ(x0) =

n∑
i=1

ωiZ(xi) (6)

where weights {ωi} are normalized, i.e.
∑n
i=1 ωi = 1.

The minimization of mean squared error E[(Ẑ(x0)−
Z(x0))2] with respect to {ωi} under the normalization
constraint leads straightforwardly to a set of linear equa-
tions, solving which results in the optimal {ω∗i }:


ω1

ω2

...
ωn

λ

 =


γ(d11) ... γ(d1n) 1
γ(d21) ... γ(d2n) 1
... ... ... ...

γ(dn1) ... γ(dnn) 1
1 ... 1 0


−1

·


γ(d01)
γ(d02)
...

γ(d0n)
1


(7)

where dij ≡ |xi − xj |, the Euclidean distance between
locations i and j, and λ the Lagrange parameter used
to enforce the normalization constraint. The minimized
MSE is called the Kriging variance, representing predic-
tion uncertainty at location x0. In general, the Kriging
variance is smaller if the unmeasured location is close
to nearby data points providing interpolation support.

III. MEASUREMENT CAMPAIGN

A vehicle-based measurement campaign was con-
ducted over a 4.6km x 5km sub-urban area (Fig. 1)
with a typical geographical layout (e.g., streets, trees,
buildings etc.) in Seattle lasting two and a half days.
Our main purpose is to evaluate the efficacy of Kriging
in estimating RSS and coverage boundaries for TV
transmitters. A total of 31 permissible 6-MHz UHF
channels (CH 21 to 51) from 512 MHz to 698 MHz,
were sampled at a total of 240 different locations.

CH 26 

36 km 

CH 33/42/46/50/51 

114 km 

CH 35 

49 km 

CH 27 

32 km 

CH 47 

11 km 

CH 22/24/25/44 

9 km 

CH 31/38/39/48 

30 km 

4.6 km 

5 km 

(a) 

(b) 

(c) 

Fig. 1: (a) Locations of TV transmitters whose FCC
Curves coverage regions cover the sampled regions. (b)
240 sample locations (in red dots). (c) Spectrum analyzer
consisting of a laptop, a USRP B210 and an antenna.

A. Equipment and Setup

Our spectrum analyzer (Fig. 1) was constructed with
a laptop, a USRP B210 operating over GNURadio [18],
and an omni-directional digital TV antenna of a 3-dBi
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gain, which was securely mounted on the top of a van.
The antenna height was around 2.2 meters above ground.

To calibrate our spectrum analyzer, we fed tones with
known signal power at a known frequency using a signal
generator, recorded I/Q samples, estimated uncalibrated
signal power at the corresponding bin, and computed the
average offset based on 900 measurements. To further
measure the noise level, we fed nothing to USRP and
estimated the calibrated signal strength over a 6-MHz
channel. The maximum signal strength (with noise only)
out of 500 measurements was taken as the noise level.

B. Measurement Design

We adopted a grid sampling design and determined
measurement locations as follows. First, we defined the
region of interest, and generated a “uniform" (equilateral
triangular) sample grid similar to [12]. To balance op-
portunity costs (e.g., labor, time etc.) and interpolation
resolution, a grid spacing of approximate 350 meters
was chosen, resulting in a total of 240 sample locations.
However, due to various physical constraints (e.g., roads,
buildings, trees etc.), we were not able to comply with
the original sampling plan strictly, and hence the final
layout appeared a little irregular at many places. That
being said, our measurement campaign reflected the
complexity of practical sampling over a large geograph-
ical region, as well as irregularity in obtained data. In
practice, we did not follow any particular sampling order,
and sampled in a way that was smooth and efficient.

C. Methodology

Our measurement consisted of two phases: i) I/Q
sample collection, and ii) energy-detection-based post-
processing. In the first phase, we prepared a Python
script which tuned USRP to the center frequency of a
6-MHz channel, and sampled the signal at a rate of 8
MHz for 0.5 seconds. The main reason of over-sampling
a channel was to minimize FFT edge effects by dropping
the first and last 12.5% bins of obtained periodograms
(up to a total of 25% bins, i.e., 2 MHz) later at the post-
processing stage.

Raw I/Q samples for a single channel were then stored
in shorts (i.e., two bytes for an I or Q sample), generating
a data file of size 16 MB. After sampling a channel,
the script waited for 0.5 seconds before switching to
the next one to ensure successful tuning. Hence, it took
approximately 30 seconds to perform a complete scan
for 31 channels.

The script varied a key parameter called the USRP
gain (ranging from 0 to 72) to adjust SNR when
sampling signals, especially weak ones. However, if
the signal was strong at the sampled location and

the gain was too high, it would cause Analog-Digital-
Conversion (ADC) saturation, distorting power spectral
density (PSD) and RSS data. To avoid possible ADC
saturation for any channel at any location, we set the
gain to a relatively low value of 26. On the other hand, to
measure RSS for CH 35 (weak signal) more accurately,
we chose a higher gain of 36. Given the above USRP
settings, the measured noise levels were -82.29 dBm and
-92.92 dBm for gains of 26 and 36 respectively.

In the post-processing phase, we used Matlab to
perform energy detection based on I/Q samples. Apart
from over-sampling, we also applied Blackman-Harris
windowing before performing FFT to further minimize
the effect of spectral leakage. The number of FFT bins
was 2048 for a 8-MHz band (before truncation), and
the frequency resolution of was 3.9 KHz per bin. After
dropping 25% of bins, a total of 1536 bins were obtained
for a 6-MHz channel. Then we computed power spectral
density (PSD) by averaging 100 periodograms, whose
equivalent sensing duration was 25.6 ms4. Eventually,
we could get a 240-by-3 matrix of output data for each
channel containing (X,Y,RSS) at 240 locations5.

IV. RSS ESTIMATION

RSS estimation is the building block for predicting
coverage regions of primary sources. In this section,
we first demonstrate the application of OK to RSS pre-
diction, and then quantify its performance improvement
over DBA models (i.e., FCC Curves and Longley-Rice).

Empirical	  semi-‐
variogram	  es0ma0on	  

Empirical	  semi-‐
variogram	  modeling	  

Model	  selec0on	  via	  
cross-‐valida0on	  

Interpola0on	  
(e.g.,	  Ordinary	  Kriging)	  

Visualiza0on	  (e.g.,	  Radio	  
Environment	  Maps)	  

Semivariogram	  
es0ma0on	  

Sampling/post-‐
processing	  

Fig. 2: General Kriging procedure.

A. An Ordinary Kriging Example

Fig. 2 illustrates a general Kriging procedure. After
sampling and post-processing, the empirical semivari-
ogram γ̂(h) (truncated, as shown in Fig. 3b) was esti-
mated from measured data using the robust estimator in
Eq. 4. The lag spacing was 0.35 km - same as the sample
spacing - and 1/3 of the maximum pairwise distance

4Different from real-time spectrum sensing, sensing duration was
not critical for Kriging applications. Hence, we chose a relatively long
sensing duration to ensure good energy detection performance.

5Locations were converted from geo-coordinates with respect to a
reference point.
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Fig. 3: (a) TV transmitter of CH 35 and its DBA coverage region (in red). (b) Empirical semivariogram and four
fitted parametric models (i.e., exponential, Gaussian, spherical and cubic). Based on cross-validation results, the
exponential model was chosen with a nugget of 6.48, a range of 2.11 and a sill of 22.02. (c) A map of RSS
predictions. (d) A map of Kriging variances. The red indicates high values, while the white implies low values.
Lines in (c)/(d) are contours representing different RSS/Kriging variance values (not shown due to limit of space).

was chosen as the maximum lag distance (i.e., 2.3 km).
Next, four popular models, i.e., exponential, Gaussian,
spherical and cubic models were fitted to γ̂(h), and the
exponential one was selected based on CV results.

To visualize a Radio Map for a continuous region
(i.e., estimating every location within the region), we first
discretized it using a mesh of grid points at a particular
resolution. For example, with a resolution of 0.03 km, we
have a total of over 28,400 points for the target region.
Then, we interpolated the RSS value for each grid point,
and obtained its corresponding Kriging variance. Finally,
we plotted both Kriging predictions and variances on
maps as shown in Fig. 3c and 3d.

B. Kriging Versus DBA Models
To compare the performance between OK, Longley-

Rice (LR) and FCC Curves (FC), four channels (e.g.,
CH 25, 31, 33, 50) were investigated with diverse
channel characteristics (Table I), whose average SNR
exceeded 15 dB so that noise power could be omitted.
Representing the simplest method, OK’s performance
may serve as the lower-bound of the Kriging family. To
ensure fair comparison, the following equation was used
to convert fields strength predictions (dBµV/m) of DBA
models to signal strengths (dBm):

PdBm = EdBµV/m − 20logfMHz +GdBi − 77.2 (8)

where fMHz is the center frequency of a channel and
GdBi = 3 dBi is the antenna gain.

The leave-one-out cross-validation technique was ap-
plied, and two metrics were adopted to quantify the
prediction performance: i) the bias or mean error (ME) –
the average difference between predicted and measured
RSS (ground truth), and ii) the root mean squared error
(RMSE) between the prediction and ground truth.

We have two observations from results in Table I.
First, OK achieves a ME value very close to 0, mainly
because it is an unbiased estimator based on local

measurements. On the other hand, although FC causes a
smaller ME than LR, both over-estimate RSS in general
causing a ME as high as 31.59 and 27.27 dB respectively.
Second, OK consistently produces a RMSE of 5 - 6 dB,
which is significantly better than DBA models, primarily
because that DBA models do not explicitly account for
environmental obstructions (e.g. trees, buildings, etc.).
However, DBA model performance differs from channel
to channel, thus making OK gain channel-dependent.

V. BOUNDARY ESTIMATION

We first introduce two metrics used to measure bound-
ary estimation performance, and then compare Kriging
against DBA models and the popular k-Nearest Neighbor
(k-NN) classifier, applied to our problem.

A. Performance Metrics

TV coverage regions are essentially decision regions
(Fig. 3a) defined by their boundaries, based on which
we may predict at a given location whether a channel
is either available for unlicensed access (labeled with
1, TV service unavailable) or occupied (labeled with 0,
TV service available). In DBAs, the channel availability
label is determined via simple thresholding as follows:

L̂DBA(x) =

{
1, if ẐDBA(x) < Γ

0, otherwise
(9)

where ẐDBA(x) is the predicted field strength (dBµV/m),
L̂DBA(x) the predicted label, and Γ a preset full-power
DTV service threshold (i.e., 41 dBµV/m).

Therefore, it is essentially a classification problem to
determine channel availability at a location. Given a set
of N measurements, we may evaluate the performance
of different classification schemes or boundaries via
leave-one-out cross-validation as follows. First, one data
point is excluded from the entire dataset, whose label
is predicted based on estimated boundaries derived from
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CH
ERP HAAT Dist. Mu Sigma ME (dB) RMSE (dB) OK Gain

(dBW) (m) (km) (dBm) (dB) OK LR FC OK LR FC Over FC

25 60.00 290 11.32 -50.34 7.11 0.02 31.59 27.27 5.15 32.45 28.10 22.95

31 58.45 218 9.48 -53.46 8.34 0.00 30.65 26.57 5.79 31.51 27.92 22.13

33 56.02 716 35.95 -68.86 6.59 -0.07 27.86 21.60 5.21 29.06 22.63 17.42

50 53.08 719 35.98 -52.06 8.87 0.00 14.99 8.95 5.72 19.78 12.75 7.03

TABLE I: Performance comparison between OK, Longley-Rice (LR) and FCC Curves (FC) via ME and RMSE.
OK gain is defined as the amount of RMSE reduced by OK compred to FC. ERP stands for effective radiate power,
and HAAT height above average terrain. Note that Kriging performs significantly better than DBA models.

the remaining data. If the measured RSS value at that
location is treated as ground truth, its true label may then
be obtained with respect to a preset threshold through
thresholding. Comparing the predicted label against the
true label, we get two types of errors:
• Type I error: a channel is predicted to be occupied

(0), when it is actually available (1).
• Type II error: a channel is predicted to be available

(1), when it is actually occupied (0).
Then we could repeat the above procedure for each

data point, and count type I/II errors for a particular
boundary estimation scheme and arrive at:
• Type I error rate ε1:

ε1 =
No. of Type I Errors
No. of True 1 Labels

(10)

• Type II error rate ε2 :

ε2 =
No. of Type II Errors
No. of True 0 Labels

(11)

Notably, the cost of the two types of errors is asym-
metric per FCC ruling; we seek to reduce ε1 (i.e., missing
spectrum opportunities), while keeping ε2 (i.e., possible
interference) below an acceptable limit.

B. Methods

1) Method I – DBA Boundary: To first predict the
field strength at a given location from a TV transmitter,
a DBA model takes engineering parameters such as
the distance between transmitter and receiver, channel,
effective radiate power, antenna height and patterns, as
well as terrain data as inputs (for Longley-Rice), and
outputs the field strength (dBµV/m) without involving
any local measurements.

To further determine boundaries of a transmitter, a
DBA finds the farthest point for each azimuth value
(0-360 degrees centered at TV transmitter location),
whose predicted field strength is above the preset TV
service threshold (i.e., 41 dBµV/m). By connecting those
points with a continuous line, a DBA is able to obtain
boundaries that define a TV coverage region.

2) Method II – k-NN Boundary: k-NN normally takes
labels of measured (training) data with respect to a
threshold Γ (i.e., -84 dBm) as true inputs, and directly
predicts the label of an unmeasured (testing) location
as follows. First, it searches for the k nearest neighbors
for the given location based on Euclidean distance, and
uses the majority label among k neighboring labels as
the predicted label (any tie is broken randomly).

Note that k is user-defined, and the optimal value k∗

is determined from the training dataset through cross
validation as follows. First, the entire training set is
randomly divided into M (e.g., 10) subsets. Then, for
a given k, each and every subset are excluded, whose
labels are predicted based on true labels of other four
subsets. Then we could count type I/II errors, and
compute ε1/ε2 accordingly. Different values of k from
1 to kmax (some large value) are examined, and the one
with minimum ε2 (with higher priority) is chosen as k∗.

Obviously, k-NN boundary estimation performance
evaluated with the testing dataset in terms of ε1 and ε2
largely depends on Γ. Hence, one way to control k-NN
boundaries is to use an adjusted threshold Γ′ = (1+α)Γ
to label training data instead of Γ, where α ≥ 0. For
example, if Γ = −84 dBm and we want to make k-NN
more conservative in predicting available channels, we
may choose a lower Γ′ = −85 dBm (α = 1.2%).

3) Method III- Kriging Boundary: We use Eq. 9 to
produce a labeling rule for Kriging by recognizing the
prediction uncertainty at a given location as follows:

L̂Kri(x) =

{
1, if ẐKri(x) < Γ− λ · σ(x)

0, otherwise
(12)

where σ(x) is the Kriging standard deviation, and λ ≥ 0
a control parameter. Given the true value Z(x) > Γ
(occupied) but ẐKri(x) < Γ (predicted to be available),
λmin = (Γ − ẐKri(x))/σ(x) is the minimum value to
change the predicted label from 1 to 0 (no type II errors).

Note that objectives of α in k-NN and λ in Kriging are
consistent: the predicted RSS at a given location has to
be low enough to be labeled as 1 (available); otherwise,
we would rather label it as 0 to avoid possible type II
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errors (even at the cost of increased type I errors). Their
effects will be explored in the next section.

C. Controlling k-NN and Kriging Boundaries

To understand the impact of α and λ in k-NN and
Kriging boundaries, we investigated CH 35 in Seattle
whose predicted boundary region via the FCC Curves
falls within the measurement region. The TV service
threshold Γ was set to be -84 dBm as specified in FCC
[1]. Note that the dataset for CH 35 collected with a
USRP gain of 36 were used, as they better captured
signal power at different locations. We varied α and λ,
and computed corresponding ε1 and ε2 with the approach
described in Section V-A.

α(%) 0 2.0 4.0 6.0 7.0

k-NN
ε1 (%) 12.8 16.7 27.2 47.8 59.4

ε2(%) 43.3 38.3 18.3 8.3 5.0

sum (%) 56.1 55.0 45.5 46.1 64.4

λ 0 0.40 0.80 1.03 1.34

Kriging
ε1 (%) 10.0 16.7 30.0 41.7 53.9

ε2 (%) 46.7 31.7 18.3 10.0 5.0

sum (%) 56.7 48.4 48.3 51.7 58.9

TABLE II: Impact of α and λ on ε1/ε2. Γ = −84
dBm. With increased α and λ, ε2 of k-NN and Kriging
boundaries is reduced, while ε1 is increased.

We make two observations from Table II. First of all,
by increasing α and λ, ε2 may be effectively reduced. For
instance, when α = 7.0% and λ = 1.34, ε2 of both k-NN
and Kriging boundaries is reduced to 5%. This is because
we want to be more conservative in predicting available
channels, thus reducing type II errors as a consequence.
Second, there exists a trade-off between ε1 and ε2 as
shown in Fig. 4 which illustrates the impact of different
λ values. For example, with λ = 0.4, we are able to
reduce 9 type II errors but introduce 12 type I errors.

However, complete elimination of type II errors for
Kriging boundaries requires λ = 2.00, which would
introduce a large amount of type I errors. It implies
that predicted RSS values at a few locations are much
lower than the threshold and their true (measured) values,
and it is essentially Kriging’s under-estimation at those
locations that causes type II errors. To determine whether
they are outliers (possibly due to sampling errors), ad-
ditional measurements may be conducted at the same
and nearby locations to improve RSS estimation and
subsequent boundary estimation.

D. Performance Comparison

In this experiment, we compared the performance of
Kriging, k-NN and DBA boundaries for CH 35. Based
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Fig. 4: Histogram of λmin that changes a predicted label
from 1 (available) to 0 (occupied) for Γ = −84 dBm.
In (a), both predicted and true labels are 1, and changes
in predicted labels from 1 to 0 introduce type I errors.
In (b), predicted labels are 0 while the true labels are 1
(i.e. type II errors). Hence, changes in predicted labels
from 1 to 0 eliminate type II errors.

on both FCC Curves and Longley-Rice boundaries, the
channel is occupied at all locations within the sampled
region (i.e. predicted labels are always 0), leading to
ε2 = 0 while ε1 = 100%. To ensure fair comparison,
we adjusted Kriging and k-NN boundary estimation in
such a way that ε2 was no larger than 5% or 10%, and
compared corresponding ε1 when Γ = −84 dBm.
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Fig. 5: Comparison between DBA models, k-NN and
Kriging boundaries for Γ = -84 dBm. (a) α = 7.0%,
λ = 1.34. (b) α = 6.0%, λ = 1.03.

As shown in Fig 5, Kriging achieves significant per-
formance improvement over DBA boundary prediction
with gains of 46.1% and 58.3% in ε1 for ε2 ≤ 5% (i.e.,
fewer than 3 type II errors) and 10% (i.e., fewer than 6
type II errors) respectively. Although k-NN boundaries
cause 6% higher ε1 than Kriging, they also perform very
well compared to DBA prediction. The primary reasons
that Kriging and k-NN have very close performance are
that i) both fundamentally use spatial (neighbor-based)
information, and ii) are measurement-driven, which bet-
ter captures the local environment. Nevertheless, Kriging
uses more soft information (i.e. RSS values) than binary
labels (as in k-NN) and from more than k neighbors.

7



(a) (b)

Fig. 6: Coverage regions (in red) defined by (a) k-NN
(α = 7.0%) and (b) Kriging boundaries (λ = 1.34) for
Γ = −84 dBm. The non-coverage region is in blue.

Fig. 6 illustrates k-NN and Kriging boundaries using
all data points for Γ = −84 dBm. While the coverage
region predicted are very similar, Kriging appears to
draw boundaries more smoothly compared to k-NN.
This is mainly because k-NN considers the nearest k
neighbors, and thus two nearby locations could end up
with different labels, if the majority of their respec-
tive neighborhoods have different labels. Furthermore,
both tend to create red/blue “holes” due to data points
with large/low RSS values that are very different from
their neighbors. Hence, to determine whether they are
true outliers or not, we may need to take additional
measurements around those holes to improve boundary
estimation.

E. Impact of TV Service Threshold

Despite the specified TV service threshold of -84
dBm by FCC, it would be interesting to compare k-
NN and Kriging boundaries for different Γ values. The
results are shown in Table III; despite fairly close per-
formance, Kriging performs generally better than k-NN
in estimating boundaries with a gain as high as 16.5%.
More importantly, both achieve significant and consistent
performance improvement over DBA models.

Γ (dBm) -83 -84 -85 -86

ε2 ≤ 5%

k-NN 53.9 59.4 58.3 74.8

Kriging 56.0 53.9 52.6 58.3

Gain -2.1 5.5 5.7 16.5

ε2 ≤ 10%

k-NN 47.1 47.8 46.3 49.7

Kriging 39.3 41.7 39.4 49.1

Gain 7.8 6.1 6.9 0.6

TABLE III: ε1 (%) of k-NN and Kriging boundaries for
different service thresholds for a bounded ε2. The gain is
the reduced amount in ε1 of Kriging compared to k-NN.

VI. CONCLUSION

In this study, we quantified RSS prediction errors of
both DBA models and Kriging, and further compared
the performance of Kriging boundaries against DBA and
k-NN boundaries with data obtained at 240 locations
over a 4.6km x 5km sub-urban area in Seattle. Our
results have shown that since empirical DBA models
do not take into account local obstructions, they tend
to over-estimate RSS, while measurement-based Kriging
achieves consistently good performance. Furthermore,
Kriging boundaries achieves a type I error rate 46.1%
and 6.5% lower than DBA and k-NN boundaries respec-
tively while keeping type II error rate under a low limit
(5%) for a given service threshold (i.e., -84 dBm), and
such improvement also exists for different thresholds.

REFERENCES

[1] FCC, “Second report and order and memorandum opinion and
order,” 2008.

[2] ——, “Second memorandum opinion and order,” 2010.
[3] ——, “Third memorandum opinion and order,” 2012.
[4] A. G. Longley and P. L. Rice, “Prediction of tropospheric radio

transmission loss over irregular terrain. a computer method-
1968,” DTIC Document, Tech. Rep., 1968.

[5] FCC, “Oet bulletin no. 69, longley-rice methodology for evalu-
ating tv coverage and interference,” 2004.

[6] C. Phillips et al., “Bounding the error of path loss models,” in
Proc. 4th IEEE DYSPAN, 2011, pp. 71–82.

[7] A. Achtzehn et al., “Improving accuracy for tvws geoloca-
tion databases: Results from measurement-driven estimation ap-
proaches,” in Proc. 7th IEEE DYSPAN, 2014, pp. 392–403.

[8] ——, “Improving coverage prediction for primary multi-
transmitter networks operating in the tv whitespaces,” in Proc.
9th IEEE SECON, 2012, pp. 623–631.

[9] V. Erceg et al., “An empirically based path loss model for
wireless channels in suburban environments,” Selected Areas in
Communications, IEEE Journal on, pp. 1205–1211, 1999.

[10] V. Abhayawardhana et al., “Comparison of empirical propagation
path loss models for fixed wireless access systems,” in Vehicular
Technology Conference, 2005., 2005, pp. 73–77.

[11] A. Konak, “A kriging approach to predicting coverage in wireless
networks,” International Journal of Mobile Network Design and
Innovation, pp. 65–71, 2009.

[12] C. Phillips et al., “Practical radio environment mapping with
geostatistics,” in Proc. 5th IEEE DYSPAN, 2012, pp. 422–433.

[13] J. Ojaniemi et al., “A practical method for combining multivariate
data in radio environment mapping,” in IEEE PIMRC 2013.

[14] S.-J. Kim et al., “Cooperative spectrum sensing for cognitive
radios using kriged kalman filtering,” Selected Topics in Signal
Processing, IEEE Journal of, vol. 5, no. 1, pp. 24–36, 2011.

[15] H. B. Yilmaz and T. Tugcu, “Location estimation-based radio
environment map construction in fading channels,” Wireless
Communications and Mobile Computing, 2013.

[16] N. Cressie and D. Hawkins, “Robust estimation of the variogram:
I,” Journal of the International Association for Mathematical
Geology, pp. 115–125, 1980.

[17] P. J. Ribeiro Jr and P. J. Diggle, “geor: A package for geostatis-
tical analysis,” R news, vol. 1, no. 2, pp. 14–18, 2001.

[18] “Universal software radio peripheral b210,” https://www.ettus.
com/product/details/UB210-KIT, accessed: 2014-07-11.

8


